Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvmulxx | GIF version |
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 13013. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.) |
Ref | Expression |
---|---|
dvadd.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvadd.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvaddxx.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
dvadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvadd.df | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
dvadd.dg | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
Ref | Expression |
---|---|
dvmulxx | ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | cnex 7835 | . . . . . 6 ⊢ ℂ ∈ V | |
3 | 2 | a1i 9 | . . . . 5 ⊢ (𝜑 → ℂ ∈ V) |
4 | mulcl 7838 | . . . . . . 7 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | |
5 | 4 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ) |
6 | dvadd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
7 | dvaddxx.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
8 | dvadd.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
9 | 1, 8 | ssexd 4100 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
10 | inidm 3312 | . . . . . 6 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
11 | 5, 6, 7, 9, 9, 10 | off 6034 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ) |
12 | elpm2r 6600 | . . . . 5 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) | |
13 | 3, 1, 11, 8, 12 | syl22anc 1218 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) |
14 | dvfgg 13004 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) | |
15 | 1, 13, 14 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) |
16 | 15 | ffund 5316 | . 2 ⊢ (𝜑 → Fun (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
17 | recnprss 13003 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
19 | dvadd.df | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
20 | elpm2r 6600 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
21 | 3, 1, 6, 8, 20 | syl22anc 1218 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
22 | dvfgg 13004 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
23 | 1, 21, 22 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
24 | ffun 5315 | . . . . 5 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
25 | funfvbrb 5573 | . . . . 5 ⊢ (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) | |
26 | 23, 24, 25 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) |
27 | 19, 26 | mpbid 146 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)) |
28 | dvadd.dg | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) | |
29 | elpm2r 6600 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) | |
30 | 3, 1, 7, 8, 29 | syl22anc 1218 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
31 | dvfgg 13004 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
32 | 1, 30, 31 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
33 | ffun 5315 | . . . . 5 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
34 | funfvbrb 5573 | . . . . 5 ⊢ (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) | |
35 | 32, 33, 34 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) |
36 | 28, 35 | mpbid 146 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)) |
37 | eqid 2154 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
38 | 6, 8, 7, 18, 27, 36, 37 | dvmulxxbr 13013 | . 2 ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
39 | funbrfv 5500 | . 2 ⊢ (Fun (𝑆 D (𝐹 ∘𝑓 · 𝐺)) → (𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶))) → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶))))) | |
40 | 16, 38, 39 | sylc 62 | 1 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 Vcvv 2709 ⊆ wss 3098 {cpr 3557 class class class wbr 3961 dom cdm 4579 ∘ ccom 4583 Fun wfun 5157 ⟶wf 5159 ‘cfv 5163 (class class class)co 5814 ∘𝑓 cof 6020 ↑pm cpm 6583 ℂcc 7709 ℝcr 7710 + caddc 7714 · cmul 7716 − cmin 8025 abscabs 10874 MetOpencmopn 12332 D cdv 12971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 ax-addf 7833 ax-mulf 7834 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-of 6022 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-map 6584 df-pm 6585 df-sup 6916 df-inf 6917 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-xneg 9657 df-xadd 9658 df-seqfrec 10323 df-exp 10397 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-rest 12300 df-topgen 12319 df-psmet 12334 df-xmet 12335 df-met 12336 df-bl 12337 df-mopn 12338 df-top 12343 df-topon 12356 df-bases 12388 df-ntr 12443 df-cn 12535 df-cnp 12536 df-tx 12600 df-cncf 12905 df-limced 12972 df-dvap 12973 |
This theorem is referenced by: dvimulf 13017 |
Copyright terms: Public domain | W3C validator |