ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxx GIF version

Theorem dvmulxx 14853
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 14851. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvadd.df (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
dvadd.dg (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
Assertion
Ref Expression
dvmulxx (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))

Proof of Theorem dvmulxx
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 7996 . . . . . 6 ℂ ∈ V
32a1i 9 . . . . 5 (𝜑 → ℂ ∈ V)
4 mulcl 7999 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
54adantl 277 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
6 dvadd.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dvaddxx.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
8 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
91, 8ssexd 4169 . . . . . 6 (𝜑𝑋 ∈ V)
10 inidm 3368 . . . . . 6 (𝑋𝑋) = 𝑋
115, 6, 7, 9, 9, 10off 6143 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
12 elpm2r 6720 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
133, 1, 11, 8, 12syl22anc 1250 . . . 4 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
14 dvfgg 14842 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
151, 13, 14syl2anc 411 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
1615ffund 5407 . 2 (𝜑 → Fun (𝑆 D (𝐹𝑓 · 𝐺)))
17 recnprss 14841 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
181, 17syl 14 . . 3 (𝜑𝑆 ⊆ ℂ)
19 dvadd.df . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
20 elpm2r 6720 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
213, 1, 6, 8, 20syl22anc 1250 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
22 dvfgg 14842 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
231, 21, 22syl2anc 411 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
24 ffun 5406 . . . . 5 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
25 funfvbrb 5671 . . . . 5 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2623, 24, 253syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2719, 26mpbid 147 . . 3 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
28 dvadd.dg . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
29 elpm2r 6720 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
303, 1, 7, 8, 29syl22anc 1250 . . . . . 6 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
31 dvfgg 14842 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
321, 30, 31syl2anc 411 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
33 ffun 5406 . . . . 5 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
34 funfvbrb 5671 . . . . 5 (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3532, 33, 343syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3628, 35mpbid 147 . . 3 (𝜑𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))
37 eqid 2193 . . 3 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
386, 8, 7, 18, 27, 36, 37dvmulxxbr 14851 . 2 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
39 funbrfv 5595 . 2 (Fun (𝑆 D (𝐹𝑓 · 𝐺)) → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶)))))
4016, 38, 39sylc 62 1 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  {cpr 3619   class class class wbr 4029  dom cdm 4659  ccom 4663  Fun wfun 5248  wf 5250  cfv 5254  (class class class)co 5918  𝑓 cof 6128  pm cpm 6703  cc 7870  cr 7871   + caddc 7875   · cmul 7877  cmin 8190  abscabs 11141  MetOpencmopn 14037   D cdv 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pm 6705  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  dvimulf  14855
  Copyright terms: Public domain W3C validator