ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxx GIF version

Theorem dvmulxx 12720
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 12718. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvadd.df (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
dvadd.dg (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
Assertion
Ref Expression
dvmulxx (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))

Proof of Theorem dvmulxx
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 7708 . . . . . 6 ℂ ∈ V
32a1i 9 . . . . 5 (𝜑 → ℂ ∈ V)
4 mulcl 7711 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
54adantl 273 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
6 dvadd.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dvaddxx.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
8 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
91, 8ssexd 4036 . . . . . 6 (𝜑𝑋 ∈ V)
10 inidm 3253 . . . . . 6 (𝑋𝑋) = 𝑋
115, 6, 7, 9, 9, 10off 5960 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
12 elpm2r 6526 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
133, 1, 11, 8, 12syl22anc 1200 . . . 4 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
14 dvfgg 12709 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
151, 13, 14syl2anc 406 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
1615ffund 5244 . 2 (𝜑 → Fun (𝑆 D (𝐹𝑓 · 𝐺)))
17 recnprss 12708 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
181, 17syl 14 . . 3 (𝜑𝑆 ⊆ ℂ)
19 dvadd.df . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
20 elpm2r 6526 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
213, 1, 6, 8, 20syl22anc 1200 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
22 dvfgg 12709 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
231, 21, 22syl2anc 406 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
24 ffun 5243 . . . . 5 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
25 funfvbrb 5499 . . . . 5 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2623, 24, 253syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2719, 26mpbid 146 . . 3 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
28 dvadd.dg . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
29 elpm2r 6526 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
303, 1, 7, 8, 29syl22anc 1200 . . . . . 6 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
31 dvfgg 12709 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
321, 30, 31syl2anc 406 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
33 ffun 5243 . . . . 5 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
34 funfvbrb 5499 . . . . 5 (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3532, 33, 343syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3628, 35mpbid 146 . . 3 (𝜑𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))
37 eqid 2115 . . 3 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
386, 8, 7, 18, 27, 36, 37dvmulxxbr 12718 . 2 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
39 funbrfv 5426 . 2 (Fun (𝑆 D (𝐹𝑓 · 𝐺)) → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶)))))
4016, 38, 39sylc 62 1 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  Vcvv 2658  wss 3039  {cpr 3496   class class class wbr 3897  dom cdm 4507  ccom 4511  Fun wfun 5085  wf 5087  cfv 5091  (class class class)co 5740  𝑓 cof 5946  pm cpm 6509  cc 7582  cr 7583   + caddc 7587   · cmul 7589  cmin 7897  abscabs 10709  MetOpencmopn 12049   D cdv 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704  ax-addf 7706  ax-mulf 7707
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-of 5948  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-xneg 9499  df-xadd 9500  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-rest 12017  df-topgen 12036  df-psmet 12051  df-xmet 12052  df-met 12053  df-bl 12054  df-mopn 12055  df-top 12060  df-topon 12073  df-bases 12105  df-ntr 12160  df-cn 12252  df-cnp 12253  df-tx 12317  df-cncf 12622  df-limced 12677  df-dvap 12678
This theorem is referenced by:  dvimulf  12722
  Copyright terms: Public domain W3C validator