ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxx GIF version

Theorem dvmulxx 13015
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 13013. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvadd.df (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
dvadd.dg (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
Assertion
Ref Expression
dvmulxx (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))

Proof of Theorem dvmulxx
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 7835 . . . . . 6 ℂ ∈ V
32a1i 9 . . . . 5 (𝜑 → ℂ ∈ V)
4 mulcl 7838 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
54adantl 275 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
6 dvadd.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dvaddxx.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
8 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
91, 8ssexd 4100 . . . . . 6 (𝜑𝑋 ∈ V)
10 inidm 3312 . . . . . 6 (𝑋𝑋) = 𝑋
115, 6, 7, 9, 9, 10off 6034 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
12 elpm2r 6600 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
133, 1, 11, 8, 12syl22anc 1218 . . . 4 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
14 dvfgg 13004 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
151, 13, 14syl2anc 409 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
1615ffund 5316 . 2 (𝜑 → Fun (𝑆 D (𝐹𝑓 · 𝐺)))
17 recnprss 13003 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
181, 17syl 14 . . 3 (𝜑𝑆 ⊆ ℂ)
19 dvadd.df . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
20 elpm2r 6600 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
213, 1, 6, 8, 20syl22anc 1218 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
22 dvfgg 13004 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
231, 21, 22syl2anc 409 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
24 ffun 5315 . . . . 5 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
25 funfvbrb 5573 . . . . 5 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2623, 24, 253syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2719, 26mpbid 146 . . 3 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
28 dvadd.dg . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
29 elpm2r 6600 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
303, 1, 7, 8, 29syl22anc 1218 . . . . . 6 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
31 dvfgg 13004 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
321, 30, 31syl2anc 409 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
33 ffun 5315 . . . . 5 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
34 funfvbrb 5573 . . . . 5 (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3532, 33, 343syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3628, 35mpbid 146 . . 3 (𝜑𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))
37 eqid 2154 . . 3 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
386, 8, 7, 18, 27, 36, 37dvmulxxbr 13013 . 2 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
39 funbrfv 5500 . 2 (Fun (𝑆 D (𝐹𝑓 · 𝐺)) → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶)))))
4016, 38, 39sylc 62 1 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125  Vcvv 2709  wss 3098  {cpr 3557   class class class wbr 3961  dom cdm 4579  ccom 4583  Fun wfun 5157  wf 5159  cfv 5163  (class class class)co 5814  𝑓 cof 6020  pm cpm 6583  cc 7709  cr 7710   + caddc 7714   · cmul 7716  cmin 8025  abscabs 10874  MetOpencmopn 12332   D cdv 12971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-map 6584  df-pm 6585  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-rest 12300  df-topgen 12319  df-psmet 12334  df-xmet 12335  df-met 12336  df-bl 12337  df-mopn 12338  df-top 12343  df-topon 12356  df-bases 12388  df-ntr 12443  df-cn 12535  df-cnp 12536  df-tx 12600  df-cncf 12905  df-limced 12972  df-dvap 12973
This theorem is referenced by:  dvimulf  13017
  Copyright terms: Public domain W3C validator