| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvmulxx | GIF version | ||
| Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15289. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.) |
| Ref | Expression |
|---|---|
| dvadd.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvadd.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvaddxx.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| dvadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvadd.df | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
| dvadd.dg | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
| Ref | Expression |
|---|---|
| dvmulxx | ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | cnex 8084 | . . . . . 6 ⊢ ℂ ∈ V | |
| 3 | 2 | a1i 9 | . . . . 5 ⊢ (𝜑 → ℂ ∈ V) |
| 4 | mulcl 8087 | . . . . . . 7 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ) |
| 6 | dvadd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 7 | dvaddxx.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
| 8 | dvadd.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 9 | 1, 8 | ssexd 4200 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 10 | inidm 3390 | . . . . . 6 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
| 11 | 5, 6, 7, 9, 9, 10 | off 6194 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ) |
| 12 | elpm2r 6776 | . . . . 5 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) | |
| 13 | 3, 1, 11, 8, 12 | syl22anc 1251 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) |
| 14 | dvfgg 15275 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹 ∘𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) | |
| 15 | 1, 13, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 · 𝐺))⟶ℂ) |
| 16 | 15 | ffund 5449 | . 2 ⊢ (𝜑 → Fun (𝑆 D (𝐹 ∘𝑓 · 𝐺))) |
| 17 | recnprss 15274 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 19 | dvadd.df | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
| 20 | elpm2r 6776 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
| 21 | 3, 1, 6, 8, 20 | syl22anc 1251 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 22 | dvfgg 15275 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 23 | 1, 21, 22 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 24 | ffun 5448 | . . . . 5 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
| 25 | funfvbrb 5716 | . . . . 5 ⊢ (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) | |
| 26 | 23, 24, 25 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) |
| 27 | 19, 26 | mpbid 147 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)) |
| 28 | dvadd.dg | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) | |
| 29 | elpm2r 6776 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) | |
| 30 | 3, 1, 7, 8, 29 | syl22anc 1251 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
| 31 | dvfgg 15275 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 32 | 1, 30, 31 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 33 | ffun 5448 | . . . . 5 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
| 34 | funfvbrb 5716 | . . . . 5 ⊢ (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) | |
| 35 | 32, 33, 34 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) |
| 36 | 28, 35 | mpbid 147 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)) |
| 37 | eqid 2207 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 38 | 6, 8, 7, 18, 27, 36, 37 | dvmulxxbr 15289 | . 2 ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
| 39 | funbrfv 5640 | . 2 ⊢ (Fun (𝑆 D (𝐹 ∘𝑓 · 𝐺)) → (𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶))) → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶))))) | |
| 40 | 16, 38, 39 | sylc 62 | 1 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 {cpr 3644 class class class wbr 4059 dom cdm 4693 ∘ ccom 4697 Fun wfun 5284 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 ∘𝑓 cof 6179 ↑pm cpm 6759 ℂcc 7958 ℝcr 7959 + caddc 7963 · cmul 7965 − cmin 8278 abscabs 11423 MetOpencmopn 14418 D cdv 15242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: dvimulf 15293 |
| Copyright terms: Public domain | W3C validator |