ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxx GIF version

Theorem dvmulxx 15291
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15289. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvadd.df (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
dvadd.dg (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
Assertion
Ref Expression
dvmulxx (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))

Proof of Theorem dvmulxx
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 8084 . . . . . 6 ℂ ∈ V
32a1i 9 . . . . 5 (𝜑 → ℂ ∈ V)
4 mulcl 8087 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
54adantl 277 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
6 dvadd.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dvaddxx.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
8 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
91, 8ssexd 4200 . . . . . 6 (𝜑𝑋 ∈ V)
10 inidm 3390 . . . . . 6 (𝑋𝑋) = 𝑋
115, 6, 7, 9, 9, 10off 6194 . . . . 5 (𝜑 → (𝐹𝑓 · 𝐺):𝑋⟶ℂ)
12 elpm2r 6776 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 · 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
133, 1, 11, 8, 12syl22anc 1251 . . . 4 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆))
14 dvfgg 15275 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 · 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
151, 13, 14syl2anc 411 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)):dom (𝑆 D (𝐹𝑓 · 𝐺))⟶ℂ)
1615ffund 5449 . 2 (𝜑 → Fun (𝑆 D (𝐹𝑓 · 𝐺)))
17 recnprss 15274 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
181, 17syl 14 . . 3 (𝜑𝑆 ⊆ ℂ)
19 dvadd.df . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
20 elpm2r 6776 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
213, 1, 6, 8, 20syl22anc 1251 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
22 dvfgg 15275 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
231, 21, 22syl2anc 411 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
24 ffun 5448 . . . . 5 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
25 funfvbrb 5716 . . . . 5 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2623, 24, 253syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2719, 26mpbid 147 . . 3 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
28 dvadd.dg . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
29 elpm2r 6776 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
303, 1, 7, 8, 29syl22anc 1251 . . . . . 6 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
31 dvfgg 15275 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
321, 30, 31syl2anc 411 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
33 ffun 5448 . . . . 5 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
34 funfvbrb 5716 . . . . 5 (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3532, 33, 343syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3628, 35mpbid 147 . . 3 (𝜑𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))
37 eqid 2207 . . 3 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
386, 8, 7, 18, 27, 36, 37dvmulxxbr 15289 . 2 (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
39 funbrfv 5640 . 2 (Fun (𝑆 D (𝐹𝑓 · 𝐺)) → (𝐶(𝑆 D (𝐹𝑓 · 𝐺))((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))) → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶)))))
4016, 38, 39sylc 62 1 (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  wss 3174  {cpr 3644   class class class wbr 4059  dom cdm 4693  ccom 4697  Fun wfun 5284  wf 5286  cfv 5290  (class class class)co 5967  𝑓 cof 6179  pm cpm 6759  cc 7958  cr 7959   + caddc 7963   · cmul 7965  cmin 8278  abscabs 11423  MetOpencmopn 14418   D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvimulf  15293
  Copyright terms: Public domain W3C validator