ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrnh GIF version

Theorem ennnfonelemrnh 12987
Description: Lemma for ennnfone 12996. A consequence of ennnfonelemss 12981. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemrnh.x (𝜑𝑋 ∈ ran 𝐻)
ennnfonelemrnh.y (𝜑𝑌 ∈ ran 𝐻)
Assertion
Ref Expression
ennnfonelemrnh (𝜑 → (𝑋𝑌𝑌𝑋))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)   𝑋(𝑗,𝑘,𝑛)   𝑌(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemrnh
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . 6 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . 6 𝐻 = seq0(𝐺, 𝐽)
81, 2, 3, 4, 5, 6, 7ennnfonelemh 12975 . . . . 5 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
98ffund 5477 . . . 4 (𝜑 → Fun 𝐻)
10 ennnfonelemrnh.x . . . 4 (𝜑𝑋 ∈ ran 𝐻)
11 elrnrexdm 5774 . . . 4 (Fun 𝐻 → (𝑋 ∈ ran 𝐻 → ∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻𝑠)))
129, 10, 11sylc 62 . . 3 (𝜑 → ∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻𝑠))
138fdmd 5480 . . . 4 (𝜑 → dom 𝐻 = ℕ0)
1413rexeqdv 2735 . . 3 (𝜑 → (∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻𝑠) ↔ ∃𝑠 ∈ ℕ0 𝑋 = (𝐻𝑠)))
1512, 14mpbid 147 . 2 (𝜑 → ∃𝑠 ∈ ℕ0 𝑋 = (𝐻𝑠))
16 ennnfonelemrnh.y . . . . . 6 (𝜑𝑌 ∈ ran 𝐻)
17 elrnrexdm 5774 . . . . . 6 (Fun 𝐻 → (𝑌 ∈ ran 𝐻 → ∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻𝑡)))
189, 16, 17sylc 62 . . . . 5 (𝜑 → ∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻𝑡))
1913rexeqdv 2735 . . . . 5 (𝜑 → (∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻𝑡) ↔ ∃𝑡 ∈ ℕ0 𝑌 = (𝐻𝑡)))
2018, 19mpbid 147 . . . 4 (𝜑 → ∃𝑡 ∈ ℕ0 𝑌 = (𝐻𝑡))
2120adantr 276 . . 3 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) → ∃𝑡 ∈ ℕ0 𝑌 = (𝐻𝑡))
22 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑠 ∈ ℕ0)
2322nn0zd 9567 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑠 ∈ ℤ)
24 simprl 529 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑡 ∈ ℕ0)
2524nn0zd 9567 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑡 ∈ ℤ)
26 zletric 9490 . . . . . 6 ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑠𝑡𝑡𝑠))
2723, 25, 26syl2anc 411 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑠𝑡𝑡𝑠))
281ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
292ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝐹:ω–onto𝐴)
303ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
3122adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝑠 ∈ ℕ0)
32 simplrl 535 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝑡 ∈ ℕ0)
33 simpr 110 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝑠𝑡)
3428, 29, 30, 4, 5, 6, 7, 31, 32, 33ennnfoneleminc 12982 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → (𝐻𝑠) ⊆ (𝐻𝑡))
3534ex 115 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑠𝑡 → (𝐻𝑠) ⊆ (𝐻𝑡)))
361ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
372ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝐹:ω–onto𝐴)
383ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
39 simplrl 535 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝑡 ∈ ℕ0)
4022adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝑠 ∈ ℕ0)
41 simpr 110 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝑡𝑠)
4236, 37, 38, 4, 5, 6, 7, 39, 40, 41ennnfoneleminc 12982 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → (𝐻𝑡) ⊆ (𝐻𝑠))
4342ex 115 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑡𝑠 → (𝐻𝑡) ⊆ (𝐻𝑠)))
4435, 43orim12d 791 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → ((𝑠𝑡𝑡𝑠) → ((𝐻𝑠) ⊆ (𝐻𝑡) ∨ (𝐻𝑡) ⊆ (𝐻𝑠))))
4527, 44mpd 13 . . . 4 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → ((𝐻𝑠) ⊆ (𝐻𝑡) ∨ (𝐻𝑡) ⊆ (𝐻𝑠)))
46 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑋 = (𝐻𝑠))
47 simprr 531 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑌 = (𝐻𝑡))
4846, 47sseq12d 3255 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑋𝑌 ↔ (𝐻𝑠) ⊆ (𝐻𝑡)))
4947, 46sseq12d 3255 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑌𝑋 ↔ (𝐻𝑡) ⊆ (𝐻𝑠)))
5048, 49orbi12d 798 . . . 4 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → ((𝑋𝑌𝑌𝑋) ↔ ((𝐻𝑠) ⊆ (𝐻𝑡) ∨ (𝐻𝑡) ⊆ (𝐻𝑠))))
5145, 50mpbird 167 . . 3 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑋𝑌𝑌𝑋))
5221, 51rexlimddv 2653 . 2 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) → (𝑋𝑌𝑌𝑋))
5315, 52rexlimddv 2653 1 (𝜑 → (𝑋𝑌𝑌𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  cun 3195  wss 3197  c0 3491  ifcif 3602  {csn 3666  cop 3669   class class class wbr 4083  cmpt 4145  suc csuc 4456  ωcom 4682  ccnv 4718  dom cdm 4719  ran crn 4720  cima 4722  Fun wfun 5312  ontowfo 5316  cfv 5318  (class class class)co 6001  cmpo 6003  freccfrec 6536  pm cpm 6796  0cc0 7999  1c1 8000   + caddc 8002  cle 8182  cmin 8317  0cn0 9369  cz 9446  seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pm 6798  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670
This theorem is referenced by:  ennnfonelemfun  12988  ennnfonelemf1  12989
  Copyright terms: Public domain W3C validator