| Step | Hyp | Ref
| Expression |
| 1 | | ennnfonelemh.dceq |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 2 | | ennnfonelemh.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| 3 | | ennnfonelemh.ne |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 4 | | ennnfonelemh.g |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| 5 | | ennnfonelemh.n |
. . . . . 6
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| 6 | | ennnfonelemh.j |
. . . . . 6
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| 7 | | ennnfonelemh.h |
. . . . . 6
⊢ 𝐻 = seq0(𝐺, 𝐽) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemh 12621 |
. . . . 5
⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm
ω)) |
| 9 | 8 | ffund 5411 |
. . . 4
⊢ (𝜑 → Fun 𝐻) |
| 10 | | ennnfonelemrnh.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ran 𝐻) |
| 11 | | elrnrexdm 5701 |
. . . 4
⊢ (Fun
𝐻 → (𝑋 ∈ ran 𝐻 → ∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻‘𝑠))) |
| 12 | 9, 10, 11 | sylc 62 |
. . 3
⊢ (𝜑 → ∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻‘𝑠)) |
| 13 | 8 | fdmd 5414 |
. . . 4
⊢ (𝜑 → dom 𝐻 = ℕ0) |
| 14 | 13 | rexeqdv 2700 |
. . 3
⊢ (𝜑 → (∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻‘𝑠) ↔ ∃𝑠 ∈ ℕ0 𝑋 = (𝐻‘𝑠))) |
| 15 | 12, 14 | mpbid 147 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ ℕ0 𝑋 = (𝐻‘𝑠)) |
| 16 | | ennnfonelemrnh.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ ran 𝐻) |
| 17 | | elrnrexdm 5701 |
. . . . . 6
⊢ (Fun
𝐻 → (𝑌 ∈ ran 𝐻 → ∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻‘𝑡))) |
| 18 | 9, 16, 17 | sylc 62 |
. . . . 5
⊢ (𝜑 → ∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻‘𝑡)) |
| 19 | 13 | rexeqdv 2700 |
. . . . 5
⊢ (𝜑 → (∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻‘𝑡) ↔ ∃𝑡 ∈ ℕ0 𝑌 = (𝐻‘𝑡))) |
| 20 | 18, 19 | mpbid 147 |
. . . 4
⊢ (𝜑 → ∃𝑡 ∈ ℕ0 𝑌 = (𝐻‘𝑡)) |
| 21 | 20 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) → ∃𝑡 ∈ ℕ0 𝑌 = (𝐻‘𝑡)) |
| 22 | | simplrl 535 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → 𝑠 ∈ ℕ0) |
| 23 | 22 | nn0zd 9446 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → 𝑠 ∈ ℤ) |
| 24 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → 𝑡 ∈ ℕ0) |
| 25 | 24 | nn0zd 9446 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → 𝑡 ∈ ℤ) |
| 26 | | zletric 9370 |
. . . . . 6
⊢ ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑠 ≤ 𝑡 ∨ 𝑡 ≤ 𝑠)) |
| 27 | 23, 25, 26 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → (𝑠 ≤ 𝑡 ∨ 𝑡 ≤ 𝑠)) |
| 28 | 1 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 29 | 2 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → 𝐹:ω–onto→𝐴) |
| 30 | 3 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 31 | 22 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → 𝑠 ∈ ℕ0) |
| 32 | | simplrl 535 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → 𝑡 ∈ ℕ0) |
| 33 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → 𝑠 ≤ 𝑡) |
| 34 | 28, 29, 30, 4, 5, 6,
7, 31, 32, 33 | ennnfoneleminc 12628 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑠 ≤ 𝑡) → (𝐻‘𝑠) ⊆ (𝐻‘𝑡)) |
| 35 | 34 | ex 115 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → (𝑠 ≤ 𝑡 → (𝐻‘𝑠) ⊆ (𝐻‘𝑡))) |
| 36 | 1 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 37 | 2 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → 𝐹:ω–onto→𝐴) |
| 38 | 3 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| 39 | | simplrl 535 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → 𝑡 ∈ ℕ0) |
| 40 | 22 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → 𝑠 ∈ ℕ0) |
| 41 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → 𝑡 ≤ 𝑠) |
| 42 | 36, 37, 38, 4, 5, 6,
7, 39, 40, 41 | ennnfoneleminc 12628 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) ∧ 𝑡 ≤ 𝑠) → (𝐻‘𝑡) ⊆ (𝐻‘𝑠)) |
| 43 | 42 | ex 115 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → (𝑡 ≤ 𝑠 → (𝐻‘𝑡) ⊆ (𝐻‘𝑠))) |
| 44 | 35, 43 | orim12d 787 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → ((𝑠 ≤ 𝑡 ∨ 𝑡 ≤ 𝑠) → ((𝐻‘𝑠) ⊆ (𝐻‘𝑡) ∨ (𝐻‘𝑡) ⊆ (𝐻‘𝑠)))) |
| 45 | 27, 44 | mpd 13 |
. . . 4
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → ((𝐻‘𝑠) ⊆ (𝐻‘𝑡) ∨ (𝐻‘𝑡) ⊆ (𝐻‘𝑠))) |
| 46 | | simplrr 536 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → 𝑋 = (𝐻‘𝑠)) |
| 47 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → 𝑌 = (𝐻‘𝑡)) |
| 48 | 46, 47 | sseq12d 3214 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → (𝑋 ⊆ 𝑌 ↔ (𝐻‘𝑠) ⊆ (𝐻‘𝑡))) |
| 49 | 47, 46 | sseq12d 3214 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → (𝑌 ⊆ 𝑋 ↔ (𝐻‘𝑡) ⊆ (𝐻‘𝑠))) |
| 50 | 48, 49 | orbi12d 794 |
. . . 4
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → ((𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋) ↔ ((𝐻‘𝑠) ⊆ (𝐻‘𝑡) ∨ (𝐻‘𝑡) ⊆ (𝐻‘𝑠)))) |
| 51 | 45, 50 | mpbird 167 |
. . 3
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) ∧ (𝑡 ∈ ℕ0 ∧ 𝑌 = (𝐻‘𝑡))) → (𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋)) |
| 52 | 21, 51 | rexlimddv 2619 |
. 2
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑋 = (𝐻‘𝑠))) → (𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋)) |
| 53 | 15, 52 | rexlimddv 2619 |
1
⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋)) |