ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrnh GIF version

Theorem ennnfonelemrnh 12349
Description: Lemma for ennnfone 12358. A consequence of ennnfonelemss 12343. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemrnh.x (𝜑𝑋 ∈ ran 𝐻)
ennnfonelemrnh.y (𝜑𝑌 ∈ ran 𝐻)
Assertion
Ref Expression
ennnfonelemrnh (𝜑 → (𝑋𝑌𝑌𝑋))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)   𝑋(𝑗,𝑘,𝑛)   𝑌(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemrnh
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . 6 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . 6 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . 6 𝐻 = seq0(𝐺, 𝐽)
81, 2, 3, 4, 5, 6, 7ennnfonelemh 12337 . . . . 5 (𝜑𝐻:ℕ0⟶(𝐴pm ω))
98ffund 5341 . . . 4 (𝜑 → Fun 𝐻)
10 ennnfonelemrnh.x . . . 4 (𝜑𝑋 ∈ ran 𝐻)
11 elrnrexdm 5624 . . . 4 (Fun 𝐻 → (𝑋 ∈ ran 𝐻 → ∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻𝑠)))
129, 10, 11sylc 62 . . 3 (𝜑 → ∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻𝑠))
138fdmd 5344 . . . 4 (𝜑 → dom 𝐻 = ℕ0)
1413rexeqdv 2668 . . 3 (𝜑 → (∃𝑠 ∈ dom 𝐻 𝑋 = (𝐻𝑠) ↔ ∃𝑠 ∈ ℕ0 𝑋 = (𝐻𝑠)))
1512, 14mpbid 146 . 2 (𝜑 → ∃𝑠 ∈ ℕ0 𝑋 = (𝐻𝑠))
16 ennnfonelemrnh.y . . . . . 6 (𝜑𝑌 ∈ ran 𝐻)
17 elrnrexdm 5624 . . . . . 6 (Fun 𝐻 → (𝑌 ∈ ran 𝐻 → ∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻𝑡)))
189, 16, 17sylc 62 . . . . 5 (𝜑 → ∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻𝑡))
1913rexeqdv 2668 . . . . 5 (𝜑 → (∃𝑡 ∈ dom 𝐻 𝑌 = (𝐻𝑡) ↔ ∃𝑡 ∈ ℕ0 𝑌 = (𝐻𝑡)))
2018, 19mpbid 146 . . . 4 (𝜑 → ∃𝑡 ∈ ℕ0 𝑌 = (𝐻𝑡))
2120adantr 274 . . 3 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) → ∃𝑡 ∈ ℕ0 𝑌 = (𝐻𝑡))
22 simplrl 525 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑠 ∈ ℕ0)
2322nn0zd 9311 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑠 ∈ ℤ)
24 simprl 521 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑡 ∈ ℕ0)
2524nn0zd 9311 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑡 ∈ ℤ)
26 zletric 9235 . . . . . 6 ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑠𝑡𝑡𝑠))
2723, 25, 26syl2anc 409 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑠𝑡𝑡𝑠))
281ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
292ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝐹:ω–onto𝐴)
303ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
3122adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝑠 ∈ ℕ0)
32 simplrl 525 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝑡 ∈ ℕ0)
33 simpr 109 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → 𝑠𝑡)
3428, 29, 30, 4, 5, 6, 7, 31, 32, 33ennnfoneleminc 12344 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑠𝑡) → (𝐻𝑠) ⊆ (𝐻𝑡))
3534ex 114 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑠𝑡 → (𝐻𝑠) ⊆ (𝐻𝑡)))
361ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
372ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝐹:ω–onto𝐴)
383ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
39 simplrl 525 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝑡 ∈ ℕ0)
4022adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝑠 ∈ ℕ0)
41 simpr 109 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → 𝑡𝑠)
4236, 37, 38, 4, 5, 6, 7, 39, 40, 41ennnfoneleminc 12344 . . . . . . 7 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) ∧ 𝑡𝑠) → (𝐻𝑡) ⊆ (𝐻𝑠))
4342ex 114 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑡𝑠 → (𝐻𝑡) ⊆ (𝐻𝑠)))
4435, 43orim12d 776 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → ((𝑠𝑡𝑡𝑠) → ((𝐻𝑠) ⊆ (𝐻𝑡) ∨ (𝐻𝑡) ⊆ (𝐻𝑠))))
4527, 44mpd 13 . . . 4 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → ((𝐻𝑠) ⊆ (𝐻𝑡) ∨ (𝐻𝑡) ⊆ (𝐻𝑠)))
46 simplrr 526 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑋 = (𝐻𝑠))
47 simprr 522 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → 𝑌 = (𝐻𝑡))
4846, 47sseq12d 3173 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑋𝑌 ↔ (𝐻𝑠) ⊆ (𝐻𝑡)))
4947, 46sseq12d 3173 . . . . 5 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑌𝑋 ↔ (𝐻𝑡) ⊆ (𝐻𝑠)))
5048, 49orbi12d 783 . . . 4 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → ((𝑋𝑌𝑌𝑋) ↔ ((𝐻𝑠) ⊆ (𝐻𝑡) ∨ (𝐻𝑡) ⊆ (𝐻𝑠))))
5145, 50mpbird 166 . . 3 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) ∧ (𝑡 ∈ ℕ0𝑌 = (𝐻𝑡))) → (𝑋𝑌𝑌𝑋))
5221, 51rexlimddv 2588 . 2 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑋 = (𝐻𝑠))) → (𝑋𝑌𝑌𝑋))
5315, 52rexlimddv 2588 1 (𝜑 → (𝑋𝑌𝑌𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336  wral 2444  wrex 2445  cun 3114  wss 3116  c0 3409  ifcif 3520  {csn 3576  cop 3579   class class class wbr 3982  cmpt 4043  suc csuc 4343  ωcom 4567  ccnv 4603  dom cdm 4604  ran crn 4605  cima 4607  Fun wfun 5182  ontowfo 5186  cfv 5188  (class class class)co 5842  cmpo 5844  freccfrec 6358  pm cpm 6615  0cc0 7753  1c1 7754   + caddc 7756  cle 7934  cmin 8069  0cn0 9114  cz 9191  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  ennnfonelemfun  12350  ennnfonelemf1  12351
  Copyright terms: Public domain W3C validator