| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvaddxx | GIF version | ||
| Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15173. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.) |
| Ref | Expression |
|---|---|
| dvadd.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvadd.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| dvaddxx.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| dvadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvadd.df | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
| dvadd.dg | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
| Ref | Expression |
|---|---|
| dvaddxx | ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | cnex 8049 | . . . . . 6 ⊢ ℂ ∈ V | |
| 3 | 2 | a1i 9 | . . . . 5 ⊢ (𝜑 → ℂ ∈ V) |
| 4 | addcl 8050 | . . . . . . 7 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ) |
| 6 | dvadd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 7 | dvaddxx.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
| 8 | dvadd.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 9 | 1, 8 | ssexd 4184 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
| 10 | inidm 3382 | . . . . . 6 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
| 11 | 5, 6, 7, 9, 9, 10 | off 6171 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ) |
| 12 | elpm2r 6753 | . . . . 5 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) | |
| 13 | 3, 1, 11, 8, 12 | syl22anc 1251 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) |
| 14 | dvfgg 15160 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) | |
| 15 | 1, 13, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) |
| 16 | 15 | ffund 5429 | . 2 ⊢ (𝜑 → Fun (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
| 17 | recnprss 15159 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 19 | dvadd.df | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
| 20 | elpm2r 6753 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
| 21 | 3, 1, 6, 8, 20 | syl22anc 1251 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
| 22 | dvfgg 15160 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 23 | 1, 21, 22 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 24 | ffun 5428 | . . . . 5 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
| 25 | funfvbrb 5693 | . . . . 5 ⊢ (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) | |
| 26 | 23, 24, 25 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) |
| 27 | 19, 26 | mpbid 147 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)) |
| 28 | dvadd.dg | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) | |
| 29 | elpm2r 6753 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) | |
| 30 | 3, 1, 7, 8, 29 | syl22anc 1251 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
| 31 | dvfgg 15160 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 32 | 1, 30, 31 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 33 | ffun 5428 | . . . . 5 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
| 34 | funfvbrb 5693 | . . . . 5 ⊢ (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) | |
| 35 | 32, 33, 34 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) |
| 36 | 28, 35 | mpbid 147 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)) |
| 37 | eqid 2205 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 38 | 6, 8, 7, 18, 27, 36, 37 | dvaddxxbr 15173 | . 2 ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
| 39 | funbrfv 5617 | . 2 ⊢ (Fun (𝑆 D (𝐹 ∘𝑓 + 𝐺)) → (𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)) → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))) | |
| 40 | 16, 38, 39 | sylc 62 | 1 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 {cpr 3634 class class class wbr 4044 dom cdm 4675 ∘ ccom 4679 Fun wfun 5265 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 ∘𝑓 cof 6156 ↑pm cpm 6736 ℂcc 7923 ℝcr 7924 + caddc 7928 − cmin 8243 abscabs 11308 MetOpencmopn 14303 D cdv 15127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 ax-addf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-map 6737 df-pm 6738 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-rest 13073 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-met 14307 df-bl 14308 df-mopn 14309 df-top 14470 df-topon 14483 df-bases 14515 df-ntr 14568 df-cn 14660 df-cnp 14661 df-tx 14725 df-limced 15128 df-dvap 15129 |
| This theorem is referenced by: dviaddf 15177 |
| Copyright terms: Public domain | W3C validator |