Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvaddxx | GIF version |
Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 13135. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.) |
Ref | Expression |
---|---|
dvadd.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvadd.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvaddxx.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
dvadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvadd.df | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
dvadd.dg | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
Ref | Expression |
---|---|
dvaddxx | ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | cnex 7858 | . . . . . 6 ⊢ ℂ ∈ V | |
3 | 2 | a1i 9 | . . . . 5 ⊢ (𝜑 → ℂ ∈ V) |
4 | addcl 7859 | . . . . . . 7 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ) | |
5 | 4 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ) |
6 | dvadd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
7 | dvaddxx.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
8 | dvadd.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
9 | 1, 8 | ssexd 4106 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
10 | inidm 3317 | . . . . . 6 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
11 | 5, 6, 7, 9, 9, 10 | off 6046 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ) |
12 | elpm2r 6613 | . . . . 5 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) | |
13 | 3, 1, 11, 8, 12 | syl22anc 1221 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) |
14 | dvfgg 13127 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) | |
15 | 1, 13, 14 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) |
16 | 15 | ffund 5325 | . 2 ⊢ (𝜑 → Fun (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
17 | recnprss 13126 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
19 | dvadd.df | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
20 | elpm2r 6613 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
21 | 3, 1, 6, 8, 20 | syl22anc 1221 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
22 | dvfgg 13127 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
23 | 1, 21, 22 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
24 | ffun 5324 | . . . . 5 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
25 | funfvbrb 5582 | . . . . 5 ⊢ (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) | |
26 | 23, 24, 25 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) |
27 | 19, 26 | mpbid 146 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)) |
28 | dvadd.dg | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) | |
29 | elpm2r 6613 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) | |
30 | 3, 1, 7, 8, 29 | syl22anc 1221 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
31 | dvfgg 13127 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
32 | 1, 30, 31 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
33 | ffun 5324 | . . . . 5 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
34 | funfvbrb 5582 | . . . . 5 ⊢ (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) | |
35 | 32, 33, 34 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) |
36 | 28, 35 | mpbid 146 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)) |
37 | eqid 2157 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
38 | 6, 8, 7, 18, 27, 36, 37 | dvaddxxbr 13135 | . 2 ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
39 | funbrfv 5509 | . 2 ⊢ (Fun (𝑆 D (𝐹 ∘𝑓 + 𝐺)) → (𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)) → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))) | |
40 | 16, 38, 39 | sylc 62 | 1 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 {cpr 3562 class class class wbr 3967 dom cdm 4588 ∘ ccom 4592 Fun wfun 5166 ⟶wf 5168 ‘cfv 5172 (class class class)co 5826 ∘𝑓 cof 6032 ↑pm cpm 6596 ℂcc 7732 ℝcr 7733 + caddc 7737 − cmin 8050 abscabs 10908 MetOpencmopn 12455 D cdv 13094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulrcl 7833 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-precex 7844 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-apti 7849 ax-pre-ltadd 7850 ax-pre-mulgt0 7851 ax-pre-mulext 7852 ax-arch 7853 ax-caucvg 7854 ax-addf 7856 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-po 4258 df-iso 4259 df-iord 4328 df-on 4330 df-ilim 4331 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-isom 5181 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-of 6034 df-1st 6090 df-2nd 6091 df-recs 6254 df-frec 6340 df-map 6597 df-pm 6598 df-sup 6930 df-inf 6931 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-reap 8454 df-ap 8461 df-div 8550 df-inn 8839 df-2 8897 df-3 8898 df-4 8899 df-n0 9096 df-z 9173 df-uz 9445 df-q 9535 df-rp 9567 df-xneg 9685 df-xadd 9686 df-seqfrec 10354 df-exp 10428 df-cj 10753 df-re 10754 df-im 10755 df-rsqrt 10909 df-abs 10910 df-rest 12423 df-topgen 12442 df-psmet 12457 df-xmet 12458 df-met 12459 df-bl 12460 df-mopn 12461 df-top 12466 df-topon 12479 df-bases 12511 df-ntr 12566 df-cn 12658 df-cnp 12659 df-tx 12723 df-limced 13095 df-dvap 13096 |
This theorem is referenced by: dviaddf 13139 |
Copyright terms: Public domain | W3C validator |