Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvaddxx | GIF version |
Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 13305. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.) |
Ref | Expression |
---|---|
dvadd.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvadd.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
dvaddxx.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
dvadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvadd.df | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
dvadd.dg | ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
Ref | Expression |
---|---|
dvaddxx | ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | cnex 7877 | . . . . . 6 ⊢ ℂ ∈ V | |
3 | 2 | a1i 9 | . . . . 5 ⊢ (𝜑 → ℂ ∈ V) |
4 | addcl 7878 | . . . . . . 7 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ) | |
5 | 4 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ) |
6 | dvadd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
7 | dvaddxx.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
8 | dvadd.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
9 | 1, 8 | ssexd 4122 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ V) |
10 | inidm 3331 | . . . . . 6 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
11 | 5, 6, 7, 9, 9, 10 | off 6062 | . . . . 5 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ) |
12 | elpm2r 6632 | . . . . 5 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) | |
13 | 3, 1, 11, 8, 12 | syl22anc 1229 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) |
14 | dvfgg 13297 | . . . 4 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹 ∘𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) | |
15 | 1, 13, 14 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)):dom (𝑆 D (𝐹 ∘𝑓 + 𝐺))⟶ℂ) |
16 | 15 | ffund 5341 | . 2 ⊢ (𝜑 → Fun (𝑆 D (𝐹 ∘𝑓 + 𝐺))) |
17 | recnprss 13296 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
19 | dvadd.df | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) | |
20 | elpm2r 6632 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆)) | |
21 | 3, 1, 6, 8, 20 | syl22anc 1229 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm 𝑆)) |
22 | dvfgg 13297 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
23 | 1, 21, 22 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
24 | ffun 5340 | . . . . 5 ⊢ ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹)) | |
25 | funfvbrb 5598 | . . . . 5 ⊢ (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) | |
26 | 23, 24, 25 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))) |
27 | 19, 26 | mpbid 146 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)) |
28 | dvadd.dg | . . . 4 ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) | |
29 | elpm2r 6632 | . . . . . . 7 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆)) | |
30 | 3, 1, 7, 8, 29 | syl22anc 1229 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm 𝑆)) |
31 | dvfgg 13297 | . . . . . 6 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
32 | 1, 30, 31 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
33 | ffun 5340 | . . . . 5 ⊢ ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺)) | |
34 | funfvbrb 5598 | . . . . 5 ⊢ (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) | |
35 | 32, 33, 34 | 3syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))) |
36 | 28, 35 | mpbid 146 | . . 3 ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)) |
37 | eqid 2165 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
38 | 6, 8, 7, 18, 27, 36, 37 | dvaddxxbr 13305 | . 2 ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
39 | funbrfv 5525 | . 2 ⊢ (Fun (𝑆 D (𝐹 ∘𝑓 + 𝐺)) → (𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)) → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))) | |
40 | 16, 38, 39 | sylc 62 | 1 ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 {cpr 3577 class class class wbr 3982 dom cdm 4604 ∘ ccom 4608 Fun wfun 5182 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ∘𝑓 cof 6048 ↑pm cpm 6615 ℂcc 7751 ℝcr 7752 + caddc 7756 − cmin 8069 abscabs 10939 MetOpencmopn 12625 D cdv 13264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-addf 7875 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-map 6616 df-pm 6617 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-limced 13265 df-dvap 13266 |
This theorem is referenced by: dviaddf 13309 |
Copyright terms: Public domain | W3C validator |