ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxx GIF version

Theorem dvaddxx 15377
Description: The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15375. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvadd.df (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
dvadd.dg (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
Assertion
Ref Expression
dvaddxx (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))

Proof of Theorem dvaddxx
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 8123 . . . . . 6 ℂ ∈ V
32a1i 9 . . . . 5 (𝜑 → ℂ ∈ V)
4 addcl 8124 . . . . . . 7 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
54adantl 277 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
6 dvadd.f . . . . . 6 (𝜑𝐹:𝑋⟶ℂ)
7 dvaddxx.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
8 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
91, 8ssexd 4224 . . . . . 6 (𝜑𝑋 ∈ V)
10 inidm 3413 . . . . . 6 (𝑋𝑋) = 𝑋
115, 6, 7, 9, 9, 10off 6231 . . . . 5 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
12 elpm2r 6813 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ ((𝐹𝑓 + 𝐺):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
133, 1, 11, 8, 12syl22anc 1272 . . . 4 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆))
14 dvfgg 15362 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝐹𝑓 + 𝐺) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
151, 13, 14syl2anc 411 . . 3 (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)):dom (𝑆 D (𝐹𝑓 + 𝐺))⟶ℂ)
1615ffund 5477 . 2 (𝜑 → Fun (𝑆 D (𝐹𝑓 + 𝐺)))
17 recnprss 15361 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
181, 17syl 14 . . 3 (𝜑𝑆 ⊆ ℂ)
19 dvadd.df . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
20 elpm2r 6813 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
213, 1, 6, 8, 20syl22anc 1272 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
22 dvfgg 15362 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
231, 21, 22syl2anc 411 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
24 ffun 5476 . . . . 5 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ → Fun (𝑆 D 𝐹))
25 funfvbrb 5748 . . . . 5 (Fun (𝑆 D 𝐹) → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2623, 24, 253syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐹) ↔ 𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶)))
2719, 26mpbid 147 . . 3 (𝜑𝐶(𝑆 D 𝐹)((𝑆 D 𝐹)‘𝐶))
28 dvadd.dg . . . 4 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
29 elpm2r 6813 . . . . . . 7 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐺:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐺 ∈ (ℂ ↑pm 𝑆))
303, 1, 7, 8, 29syl22anc 1272 . . . . . 6 (𝜑𝐺 ∈ (ℂ ↑pm 𝑆))
31 dvfgg 15362 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐺 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
321, 30, 31syl2anc 411 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
33 ffun 5476 . . . . 5 ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ → Fun (𝑆 D 𝐺))
34 funfvbrb 5748 . . . . 5 (Fun (𝑆 D 𝐺) → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3532, 33, 343syl 17 . . . 4 (𝜑 → (𝐶 ∈ dom (𝑆 D 𝐺) ↔ 𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶)))
3628, 35mpbid 147 . . 3 (𝜑𝐶(𝑆 D 𝐺)((𝑆 D 𝐺)‘𝐶))
37 eqid 2229 . . 3 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
386, 8, 7, 18, 27, 36, 37dvaddxxbr 15375 . 2 (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))
39 funbrfv 5670 . 2 (Fun (𝑆 D (𝐹𝑓 + 𝐺)) → (𝐶(𝑆 D (𝐹𝑓 + 𝐺))(((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)) → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))))
4016, 38, 39sylc 62 1 (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  {cpr 3667   class class class wbr 4083  dom cdm 4719  ccom 4723  Fun wfun 5312  wf 5314  cfv 5318  (class class class)co 6001  𝑓 cof 6216  pm cpm 6796  cc 7997  cr 7998   + caddc 8002  cmin 8317  abscabs 11508  MetOpencmopn 14505   D cdv 15329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-addf 8121
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-pm 6798  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-limced 15330  df-dvap 15331
This theorem is referenced by:  dviaddf  15379
  Copyright terms: Public domain W3C validator