ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1pru GIF version

Theorem distrlem1pru 7524
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1pru ((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))

Proof of Theorem distrlem1pru
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7478 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-imp 7410 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑦) ∧ ∈ (1st𝑧) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑦) ∧ ∈ (2nd𝑧) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
3 mulclnq 7317 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelvu 7454 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 284 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
653impb 1189 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
7 df-iplp 7409 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑥) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑥) ∧ 𝑓 = (𝑔 +Q ))}⟩)
8 addclnq 7316 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelvu 7454 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1005 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧)))
1110adantr 274 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧)))
12 prop 7416 . . . . . . . . . . . . . . . . 17 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 elprnqu 7423 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (2nd𝐴)) → 𝑥Q)
1412, 13sylan 281 . . . . . . . . . . . . . . . 16 ((𝐴P𝑥 ∈ (2nd𝐴)) → 𝑥Q)
15143ad2antl1 1149 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑥Q)
1615adantrr 471 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑥Q)
1716adantr 274 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑥Q)
18 prop 7416 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 elprnqu 7423 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
2018, 19sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
21 prop 7416 . . . . . . . . . . . . . . . . . 18 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
22 elprnqu 7423 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (2nd𝐶)) → 𝑧Q)
2321, 22sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐶P𝑧 ∈ (2nd𝐶)) → 𝑧Q)
2420, 23anim12i 336 . . . . . . . . . . . . . . . 16 (((𝐵P𝑦 ∈ (2nd𝐵)) ∧ (𝐶P𝑧 ∈ (2nd𝐶))) → (𝑦Q𝑧Q))
2524an4s 578 . . . . . . . . . . . . . . 15 (((𝐵P𝐶P) ∧ (𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶))) → (𝑦Q𝑧Q))
26253adantl1 1143 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶))) → (𝑦Q𝑧Q))
2726ad2ant2r 501 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑦Q𝑧Q))
28 3anass 972 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) ↔ (𝑥Q ∧ (𝑦Q𝑧Q)))
2917, 27, 28sylanbrc 414 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥Q𝑦Q𝑧Q))
30 simprr 522 . . . . . . . . . . . . 13 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
31 simpr 109 . . . . . . . . . . . . 13 (((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
3230, 31anim12i 336 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)))
33 oveq2 5850 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
3433eqeq2d 2177 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
3534biimpac 296 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
36 distrnqg 7328 . . . . . . . . . . . . . 14 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
3736eqeq2d 2177 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) → (𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3835, 37syl5ib 153 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑧Q) → ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3929, 32, 38sylc 62 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
40 mulclpr 7513 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
41403adant3 1007 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
4241ad2antrr 480 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
43 mulclpr 7513 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
44433adant2 1006 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4544ad2antrr 480 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
46 simpll 519 . . . . . . . . . . . . 13 (((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦 ∈ (2nd𝐵))
472, 3genppreclu 7456 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵))))
48473adant3 1007 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4948impl 378 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (2nd𝐴)) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)))
5049adantlrr 475 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)))
5146, 50sylan2 284 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)))
52 simplr 520 . . . . . . . . . . . . 13 (((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧 ∈ (2nd𝐶))
532, 3genppreclu 7456 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶))))
54533adant2 1006 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶))))
5554impl 378 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (2nd𝐴)) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))
5655adantlrr 475 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))
5752, 56sylan2 284 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))
587, 8genppreclu 7456 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
5958imp 123 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6042, 45, 51, 57, 59syl22anc 1229 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6139, 60eqeltrd 2243 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6261exp32 363 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6362rexlimdvv 2590 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6411, 63sylbid 149 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6564exp32 363 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd𝐴) → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6665com34 83 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd𝐴) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6766impd 252 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6867rexlimdvv 2590 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
696, 68sylbid 149 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
7069ssrdv 3148 1 ((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wrex 2445  wss 3116  cop 3579  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   ·Q cmq 7224  Pcnp 7232   +P cpp 7234   ·P cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-imp 7410
This theorem is referenced by:  distrprg  7529
  Copyright terms: Public domain W3C validator