ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1pru GIF version

Theorem distrlem1pru 7239
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1pru ((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))

Proof of Theorem distrlem1pru
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7193 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-imp 7125 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑦) ∧ ∈ (1st𝑧) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑦) ∧ ∈ (2nd𝑧) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
3 mulclnq 7032 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelvu 7169 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 281 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
653impb 1142 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
7 df-iplp 7124 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑥) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑥) ∧ 𝑓 = (𝑔 +Q ))}⟩)
8 addclnq 7031 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelvu 7169 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧)))
1093adant1 964 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧)))
1110adantr 271 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧)))
12 prop 7131 . . . . . . . . . . . . . . . . 17 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 elprnqu 7138 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (2nd𝐴)) → 𝑥Q)
1412, 13sylan 278 . . . . . . . . . . . . . . . 16 ((𝐴P𝑥 ∈ (2nd𝐴)) → 𝑥Q)
15143ad2antl1 1108 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑥Q)
1615adantrr 464 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑥Q)
1716adantr 271 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑥Q)
18 prop 7131 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 elprnqu 7138 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
2018, 19sylan 278 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
21 prop 7131 . . . . . . . . . . . . . . . . . 18 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
22 elprnqu 7138 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (2nd𝐶)) → 𝑧Q)
2321, 22sylan 278 . . . . . . . . . . . . . . . . 17 ((𝐶P𝑧 ∈ (2nd𝐶)) → 𝑧Q)
2420, 23anim12i 332 . . . . . . . . . . . . . . . 16 (((𝐵P𝑦 ∈ (2nd𝐵)) ∧ (𝐶P𝑧 ∈ (2nd𝐶))) → (𝑦Q𝑧Q))
2524an4s 556 . . . . . . . . . . . . . . 15 (((𝐵P𝐶P) ∧ (𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶))) → (𝑦Q𝑧Q))
26253adantl1 1102 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶))) → (𝑦Q𝑧Q))
2726ad2ant2r 494 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑦Q𝑧Q))
28 3anass 931 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) ↔ (𝑥Q ∧ (𝑦Q𝑧Q)))
2917, 27, 28sylanbrc 409 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥Q𝑦Q𝑧Q))
30 simprr 500 . . . . . . . . . . . . 13 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
31 simpr 109 . . . . . . . . . . . . 13 (((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
3230, 31anim12i 332 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)))
33 oveq2 5698 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
3433eqeq2d 2106 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
3534biimpac 293 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
36 distrnqg 7043 . . . . . . . . . . . . . 14 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
3736eqeq2d 2106 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) → (𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3835, 37syl5ib 153 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑧Q) → ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3929, 32, 38sylc 62 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
40 mulclpr 7228 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
41403adant3 966 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
4241ad2antrr 473 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
43 mulclpr 7228 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
44433adant2 965 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4544ad2antrr 473 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
46 simpll 497 . . . . . . . . . . . . 13 (((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦 ∈ (2nd𝐵))
472, 3genppreclu 7171 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵))))
48473adant3 966 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4948impl 373 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (2nd𝐴)) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)))
5049adantlrr 468 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦 ∈ (2nd𝐵)) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)))
5146, 50sylan2 281 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)))
52 simplr 498 . . . . . . . . . . . . 13 (((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧 ∈ (2nd𝐶))
532, 3genppreclu 7171 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶))))
54533adant2 965 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶))))
5554impl 373 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (2nd𝐴)) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))
5655adantlrr 468 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))
5752, 56sylan2 281 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))
587, 8genppreclu 7171 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
5958imp 123 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (2nd ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (2nd ‘(𝐴 ·P 𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6042, 45, 51, 57, 59syl22anc 1182 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6139, 60eqeltrd 2171 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6261exp32 358 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6362rexlimdvv 2509 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦 ∈ (2nd𝐵)∃𝑧 ∈ (2nd𝐶)𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6411, 63sylbid 149 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6564exp32 358 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd𝐴) → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6665com34 83 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (2nd𝐴) → (𝑣 ∈ (2nd ‘(𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6766impd 252 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (2nd𝐴) ∧ 𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6867rexlimdvv 2509 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (2nd𝐴)∃𝑣 ∈ (2nd ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
696, 68sylbid 149 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) → 𝑤 ∈ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
7069ssrdv 3045 1 ((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445  wrex 2371  wss 3013  cop 3469  cfv 5049  (class class class)co 5690  1st c1st 5947  2nd c2nd 5948  Qcnq 6936   +Q cplq 6938   ·Q cmq 6939  Pcnp 6947   +P cpp 6949   ·P cmp 6950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-2o 6220  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009  df-enq0 7080  df-nq0 7081  df-0nq0 7082  df-plq0 7083  df-mq0 7084  df-inp 7122  df-iplp 7124  df-imp 7125
This theorem is referenced by:  distrprg  7244
  Copyright terms: Public domain W3C validator