ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpq GIF version

Theorem elpq 9535
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
elpq ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elq 9509 . . . . 5 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦))
2 rexcom 2618 . . . . 5 (∃𝑧 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑧 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
31, 2bitri 183 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦))
4 breq2 3965 . . . . . . . . . . 11 (𝐴 = (𝑧 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑧 / 𝑦)))
5 zre 9150 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
65adantl 275 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ)
7 nnre 8819 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
87adantr 274 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℝ)
9 nngt0 8837 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 < 𝑦)
109adantr 274 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 0 < 𝑦)
11 gt0div 8720 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 < 𝑦) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
126, 8, 10, 11syl3anc 1217 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧 ↔ 0 < (𝑧 / 𝑦)))
1312bicomd 140 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < (𝑧 / 𝑦) ↔ 0 < 𝑧))
144, 13sylan9bb 458 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 ↔ 0 < 𝑧))
15 elnnz 9156 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ ↔ (𝑧 ∈ ℤ ∧ 0 < 𝑧))
1615simplbi2 383 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (0 < 𝑧𝑧 ∈ ℕ))
1716adantl 275 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝑧𝑧 ∈ ℕ))
1817adantl 275 . . . . . . . . . . . . 13 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧𝑧 ∈ ℕ))
1918imp 123 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝑧 ∈ ℕ)
20 oveq1 5821 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
2120eqeq2d 2166 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
2221adantl 275 . . . . . . . . . . . 12 ((((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) ∧ 𝑥 = 𝑧) → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑧 / 𝑦)))
23 simpll 519 . . . . . . . . . . . 12 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → 𝐴 = (𝑧 / 𝑦))
2419, 22, 23rspcedvd 2819 . . . . . . . . . . 11 (((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) ∧ 0 < 𝑧) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2524ex 114 . . . . . . . . . 10 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝑧 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2614, 25sylbid 149 . . . . . . . . 9 ((𝐴 = (𝑧 / 𝑦) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
2726ex 114 . . . . . . . 8 (𝐴 = (𝑧 / 𝑦) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (0 < 𝐴 → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2827com13 80 . . . . . . 7 (0 < 𝐴 → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))))
2928impl 378 . . . . . 6 (((0 < 𝐴𝑦 ∈ ℕ) ∧ 𝑧 ∈ ℤ) → (𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3029rexlimdva 2571 . . . . 5 ((0 < 𝐴𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3130reximdva 2556 . . . 4 (0 < 𝐴 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℤ 𝐴 = (𝑧 / 𝑦) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
323, 31syl5bi 151 . . 3 (0 < 𝐴 → (𝐴 ∈ ℚ → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
3332impcom 124 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
34 rexcom 2618 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
3533, 34sylibr 133 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125  wrex 2433   class class class wbr 3961  (class class class)co 5814  cr 7710  0cc0 7711   < clt 7891   / cdiv 8524  cn 8812  cz 9146  cq 9506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-z 9147  df-q 9507
This theorem is referenced by:  elpqb  9536  logbgcd1irr  13223
  Copyright terms: Public domain W3C validator