ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1prl GIF version

Theorem distrlem1prl 7544
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1prl ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))

Proof of Theorem distrlem1prl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7499 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-imp 7431 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑦) ∧ ∈ (1st𝑧) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑦) ∧ ∈ (2nd𝑧) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
3 mulclnq 7338 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelvl 7474 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 284 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
653impb 1194 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
7 df-iplp 7430 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑥) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑥) ∧ 𝑓 = (𝑔 +Q ))}⟩)
8 addclnq 7337 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelvl 7474 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1010 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
1110adantr 274 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
12 prop 7437 . . . . . . . . . . . . . . . . 17 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 elprnql 7443 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → 𝑥Q)
1412, 13sylan 281 . . . . . . . . . . . . . . . 16 ((𝐴P𝑥 ∈ (1st𝐴)) → 𝑥Q)
15143ad2antl1 1154 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) → 𝑥Q)
1615adantrr 476 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑥Q)
1716adantr 274 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑥Q)
18 prop 7437 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 elprnql 7443 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → 𝑦Q)
2018, 19sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → 𝑦Q)
21 prop 7437 . . . . . . . . . . . . . . . . . 18 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
22 elprnql 7443 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (1st𝐶)) → 𝑧Q)
2321, 22sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐶P𝑧 ∈ (1st𝐶)) → 𝑧Q)
2420, 23anim12i 336 . . . . . . . . . . . . . . . 16 (((𝐵P𝑦 ∈ (1st𝐵)) ∧ (𝐶P𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
2524an4s 583 . . . . . . . . . . . . . . 15 (((𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
26253adantl1 1148 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
2726ad2ant2r 506 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑦Q𝑧Q))
28 3anass 977 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) ↔ (𝑥Q ∧ (𝑦Q𝑧Q)))
2917, 27, 28sylanbrc 415 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥Q𝑦Q𝑧Q))
30 simprr 527 . . . . . . . . . . . . 13 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
31 simpr 109 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
3230, 31anim12i 336 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)))
33 oveq2 5861 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
3433eqeq2d 2182 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
3534biimpac 296 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
36 distrnqg 7349 . . . . . . . . . . . . . 14 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
3736eqeq2d 2182 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) → (𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3835, 37syl5ib 153 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑧Q) → ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3929, 32, 38sylc 62 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
40 mulclpr 7534 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
41403adant3 1012 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
4241ad2antrr 485 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
43 mulclpr 7534 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
44433adant2 1011 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4544ad2antrr 485 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
46 simpll 524 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦 ∈ (1st𝐵))
472, 3genpprecll 7476 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵))))
48473adant3 1012 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵))))
4948impl 378 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
5049adantlrr 480 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
5146, 50sylan2 284 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
52 simplr 525 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧 ∈ (1st𝐶))
532, 3genpprecll 7476 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))))
54533adant2 1011 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))))
5554impl 378 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
5655adantlrr 480 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
5752, 56sylan2 284 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
587, 8genpprecll 7476 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
5958imp 123 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6042, 45, 51, 57, 59syl22anc 1234 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6139, 60eqeltrd 2247 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6261exp32 363 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6362rexlimdvv 2594 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6411, 63sylbid 149 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6564exp32 363 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st𝐴) → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6665com34 83 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st𝐴) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6766impd 252 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑣 ∈ (1st ‘(𝐵 +P 𝐶))) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6867rexlimdvv 2594 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
696, 68sylbid 149 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
7069ssrdv 3153 1 ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449  wss 3121  cop 3586  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   +Q cplq 7244   ·Q cmq 7245  Pcnp 7253   +P cpp 7255   ·P cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-imp 7431
This theorem is referenced by:  distrprg  7550
  Copyright terms: Public domain W3C validator