ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1prl GIF version

Theorem distrlem1prl 7769
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1prl ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))

Proof of Theorem distrlem1prl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 7724 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-imp 7656 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑦) ∧ ∈ (1st𝑧) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑦) ∧ ∈ (2nd𝑧) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
3 mulclnq 7563 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelvl 7699 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 286 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
653impb 1223 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣)))
7 df-iplp 7655 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑥) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑥) ∧ 𝑓 = (𝑔 +Q ))}⟩)
8 addclnq 7562 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelvl 7699 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1039 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
1110adantr 276 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧)))
12 prop 7662 . . . . . . . . . . . . . . . . 17 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 elprnql 7668 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → 𝑥Q)
1412, 13sylan 283 . . . . . . . . . . . . . . . 16 ((𝐴P𝑥 ∈ (1st𝐴)) → 𝑥Q)
15143ad2antl1 1183 . . . . . . . . . . . . . . 15 (((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) → 𝑥Q)
1615adantrr 479 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑥Q)
1716adantr 276 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑥Q)
18 prop 7662 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 elprnql 7668 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → 𝑦Q)
2018, 19sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → 𝑦Q)
21 prop 7662 . . . . . . . . . . . . . . . . . 18 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
22 elprnql 7668 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (1st𝐶)) → 𝑧Q)
2321, 22sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐶P𝑧 ∈ (1st𝐶)) → 𝑧Q)
2420, 23anim12i 338 . . . . . . . . . . . . . . . 16 (((𝐵P𝑦 ∈ (1st𝐵)) ∧ (𝐶P𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
2524an4s 590 . . . . . . . . . . . . . . 15 (((𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
26253adantl1 1177 . . . . . . . . . . . . . 14 (((𝐴P𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦Q𝑧Q))
2726ad2ant2r 509 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑦Q𝑧Q))
28 3anass 1006 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) ↔ (𝑥Q ∧ (𝑦Q𝑧Q)))
2917, 27, 28sylanbrc 417 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥Q𝑦Q𝑧Q))
30 simprr 531 . . . . . . . . . . . . 13 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
31 simpr 110 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
3230, 31anim12i 338 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)))
33 oveq2 6009 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
3433eqeq2d 2241 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
3534biimpac 298 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
36 distrnqg 7574 . . . . . . . . . . . . . 14 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
3736eqeq2d 2241 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q𝑧Q) → (𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3835, 37imbitrid 154 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑧Q) → ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
3929, 32, 38sylc 62 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
40 mulclpr 7759 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
41403adant3 1041 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
4241ad2antrr 488 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
43 mulclpr 7759 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
44433adant2 1040 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
4544ad2antrr 488 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
46 simpll 527 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦 ∈ (1st𝐵))
472, 3genpprecll 7701 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵))))
48473adant3 1041 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵))))
4948impl 380 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
5049adantlrr 483 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦 ∈ (1st𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
5146, 50sylan2 286 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)))
52 simplr 528 . . . . . . . . . . . . 13 (((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧 ∈ (1st𝐶))
532, 3genpprecll 7701 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))))
54533adant2 1040 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))))
5554impl 380 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥 ∈ (1st𝐴)) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
5655adantlrr 483 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧 ∈ (1st𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
5752, 56sylan2 286 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))
587, 8genpprecll 7701 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
5958imp 124 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st ‘(𝐴 ·P 𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6042, 45, 51, 57, 59syl22anc 1272 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6139, 60eqeltrd 2306 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
6261exp32 365 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6362rexlimdvv 2655 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦 ∈ (1st𝐵)∃𝑧 ∈ (1st𝐶)𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6411, 63sylbid 150 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥 ∈ (1st𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
6564exp32 365 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st𝐴) → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6665com34 83 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (1st𝐴) → (𝑣 ∈ (1st ‘(𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))))
6766impd 254 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥 ∈ (1st𝐴) ∧ 𝑣 ∈ (1st ‘(𝐵 +P 𝐶))) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
6867rexlimdvv 2655 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥 ∈ (1st𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P 𝐶))𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
696, 68sylbid 150 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) → 𝑤 ∈ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
7069ssrdv 3230 1 ((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wrex 2509  wss 3197  cop 3669  cfv 5318  (class class class)co 6001  1st c1st 6284  2nd c2nd 6285  Qcnq 7467   +Q cplq 7469   ·Q cmq 7470  Pcnp 7478   +P cpp 7480   ·P cmp 7481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655  df-imp 7656
This theorem is referenced by:  distrprg  7775
  Copyright terms: Public domain W3C validator