Step | Hyp | Ref
| Expression |
1 | | addclpr 7478 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝐵
+P 𝐶) ∈ P) |
2 | | df-imp 7410 |
. . . . . 6
⊢
·P = (𝑦 ∈ P, 𝑧 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑦) ∧ ℎ ∈ (1st ‘𝑧) ∧ 𝑓 = (𝑔 ·Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑦)
∧ ℎ ∈
(2nd ‘𝑧)
∧ 𝑓 = (𝑔
·Q ℎ))}〉) |
3 | | mulclnq 7317 |
. . . . . 6
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
·Q ℎ) ∈ Q) |
4 | 2, 3 | genpelvl 7453 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
(𝐵
+P 𝐶) ∈ P) → (𝑤 ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶))) ↔ ∃𝑥 ∈ (1st
‘𝐴)∃𝑣 ∈ (1st
‘(𝐵
+P 𝐶))𝑤 = (𝑥 ·Q 𝑣))) |
5 | 1, 4 | sylan2 284 |
. . . 4
⊢ ((𝐴 ∈ P ∧
(𝐵 ∈ P
∧ 𝐶 ∈
P)) → (𝑤
∈ (1st ‘(𝐴 ·P (𝐵 +P
𝐶))) ↔ ∃𝑥 ∈ (1st
‘𝐴)∃𝑣 ∈ (1st
‘(𝐵
+P 𝐶))𝑤 = (𝑥 ·Q 𝑣))) |
6 | 5 | 3impb 1189 |
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝑤
∈ (1st ‘(𝐴 ·P (𝐵 +P
𝐶))) ↔ ∃𝑥 ∈ (1st
‘𝐴)∃𝑣 ∈ (1st
‘(𝐵
+P 𝐶))𝑤 = (𝑥 ·Q 𝑣))) |
7 | | df-iplp 7409 |
. . . . . . . . . . 11
⊢
+P = (𝑤 ∈ P, 𝑥 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑤) ∧ ℎ ∈ (1st ‘𝑥) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑤)
∧ ℎ ∈
(2nd ‘𝑥)
∧ 𝑓 = (𝑔 +Q
ℎ))}〉) |
8 | | addclnq 7316 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) |
9 | 7, 8 | genpelvl 7453 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝑣 ∈
(1st ‘(𝐵
+P 𝐶)) ↔ ∃𝑦 ∈ (1st ‘𝐵)∃𝑧 ∈ (1st ‘𝐶)𝑣 = (𝑦 +Q 𝑧))) |
10 | 9 | 3adant1 1005 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝑣
∈ (1st ‘(𝐵 +P 𝐶)) ↔ ∃𝑦 ∈ (1st
‘𝐵)∃𝑧 ∈ (1st
‘𝐶)𝑣 = (𝑦 +Q 𝑧))) |
11 | 10 | adantr 274 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P
𝐶)) ↔ ∃𝑦 ∈ (1st
‘𝐵)∃𝑧 ∈ (1st
‘𝐶)𝑣 = (𝑦 +Q 𝑧))) |
12 | | prop 7416 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
13 | | elprnql 7422 |
. . . . . . . . . . . . . . . . 17
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐴)) → 𝑥 ∈
Q) |
14 | 12, 13 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ (1st
‘𝐴)) → 𝑥 ∈
Q) |
15 | 14 | 3ad2antl1 1149 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ 𝑥
∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
16 | 15 | adantrr 471 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑥 ∈ Q) |
17 | 16 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑥 ∈ Q) |
18 | | prop 7416 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
19 | | elprnql 7422 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑦 ∈ (1st
‘𝐵)) → 𝑦 ∈
Q) |
20 | 18, 19 | sylan 281 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) → 𝑦 ∈
Q) |
21 | | prop 7416 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ P →
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P) |
22 | | elprnql 7422 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐶)) → 𝑧 ∈
Q) |
23 | 21, 22 | sylan 281 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ P ∧
𝑧 ∈ (1st
‘𝐶)) → 𝑧 ∈
Q) |
24 | 20, 23 | anim12i 336 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) ∧ (𝐶 ∈ P ∧
𝑧 ∈ (1st
‘𝐶))) → (𝑦 ∈ Q ∧
𝑧 ∈
Q)) |
25 | 24 | an4s 578 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ∈ P ∧
𝐶 ∈ P)
∧ (𝑦 ∈
(1st ‘𝐵)
∧ 𝑧 ∈
(1st ‘𝐶)))
→ (𝑦 ∈
Q ∧ 𝑧
∈ Q)) |
26 | 25 | 3adantl1 1143 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑦
∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶))) → (𝑦 ∈ Q ∧ 𝑧 ∈
Q)) |
27 | 26 | ad2ant2r 501 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑦 ∈ Q ∧ 𝑧 ∈
Q)) |
28 | | 3anass 972 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) ↔ (𝑥
∈ Q ∧ (𝑦 ∈ Q ∧ 𝑧 ∈
Q))) |
29 | 17, 27, 28 | sylanbrc 414 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧
𝑧 ∈
Q)) |
30 | | simprr 522 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣)) |
31 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ (1st
‘𝐵) ∧ 𝑧 ∈ (1st
‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧)) |
32 | 30, 31 | anim12i 336 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧))) |
33 | | oveq2 5850 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q
𝑧))) |
34 | 33 | eqeq2d 2177 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q
𝑧)))) |
35 | 34 | biimpac 296 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q
𝑧))) |
36 | | distrnqg 7328 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → (𝑥
·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧))) |
37 | 36 | eqeq2d 2177 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → (𝑤
= (𝑥
·Q (𝑦 +Q 𝑧)) ↔ 𝑤 = ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)))) |
38 | 35, 37 | syl5ib 153 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → ((𝑤
= (𝑥
·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)))) |
39 | 29, 32, 38 | sylc 62 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧))) |
40 | | mulclpr 7513 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴
·P 𝐵) ∈ P) |
41 | 40 | 3adant3 1007 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐴
·P 𝐵) ∈ P) |
42 | 41 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈
P) |
43 | | mulclpr 7513 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ (𝐴
·P 𝐶) ∈ P) |
44 | 43 | 3adant2 1006 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐴
·P 𝐶) ∈ P) |
45 | 44 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈
P) |
46 | | simpll 519 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ (1st
‘𝐵) ∧ 𝑧 ∈ (1st
‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦 ∈ (1st ‘𝐵)) |
47 | 2, 3 | genpprecll 7455 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝑥 ∈
(1st ‘𝐴)
∧ 𝑦 ∈
(1st ‘𝐵))
→ (𝑥
·Q 𝑦) ∈ (1st ‘(𝐴
·P 𝐵)))) |
48 | 47 | 3adant3 1007 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st
‘(𝐴
·P 𝐵)))) |
49 | 48 | impl 378 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ 𝑥
∈ (1st ‘𝐴)) ∧ 𝑦 ∈ (1st ‘𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st
‘(𝐴
·P 𝐵))) |
50 | 49 | adantlrr 475 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦 ∈ (1st ‘𝐵)) → (𝑥 ·Q 𝑦) ∈ (1st
‘(𝐴
·P 𝐵))) |
51 | 46, 50 | sylan2 284 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (1st
‘(𝐴
·P 𝐵))) |
52 | | simplr 520 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ (1st
‘𝐵) ∧ 𝑧 ∈ (1st
‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧 ∈ (1st ‘𝐶)) |
53 | 2, 3 | genpprecll 7455 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ ((𝑥 ∈
(1st ‘𝐴)
∧ 𝑧 ∈
(1st ‘𝐶))
→ (𝑥
·Q 𝑧) ∈ (1st ‘(𝐴
·P 𝐶)))) |
54 | 53 | 3adant2 1006 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → ((𝑥
∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st
‘(𝐴
·P 𝐶)))) |
55 | 54 | impl 378 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ 𝑥
∈ (1st ‘𝐴)) ∧ 𝑧 ∈ (1st ‘𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st
‘(𝐴
·P 𝐶))) |
56 | 55 | adantlrr 475 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧 ∈ (1st ‘𝐶)) → (𝑥 ·Q 𝑧) ∈ (1st
‘(𝐴
·P 𝐶))) |
57 | 52, 56 | sylan2 284 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (1st
‘(𝐴
·P 𝐶))) |
58 | 7, 8 | genpprecll 7455 |
. . . . . . . . . . . . 13
⊢ (((𝐴
·P 𝐵) ∈ P ∧ (𝐴
·P 𝐶) ∈ P) → (((𝑥
·Q 𝑦) ∈ (1st ‘(𝐴
·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st
‘(𝐴
·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)) ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))) |
59 | 58 | imp 123 |
. . . . . . . . . . . 12
⊢ ((((𝐴
·P 𝐵) ∈ P ∧ (𝐴
·P 𝐶) ∈ P) ∧ ((𝑥
·Q 𝑦) ∈ (1st ‘(𝐴
·P 𝐵)) ∧ (𝑥 ·Q 𝑧) ∈ (1st
‘(𝐴
·P 𝐶)))) → ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)) ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))) |
60 | 42, 45, 51, 57, 59 | syl22anc 1229 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)) ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))) |
61 | 39, 60 | eqeltrd 2243 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))) |
62 | 61 | exp32 363 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦 ∈ (1st ‘𝐵) ∧ 𝑧 ∈ (1st ‘𝐶)) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))))) |
63 | 62 | rexlimdvv 2590 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦 ∈ (1st
‘𝐵)∃𝑧 ∈ (1st
‘𝐶)𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))) |
64 | 11, 63 | sylbid 149 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑥
∈ (1st ‘𝐴) ∧ 𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (1st ‘(𝐵 +P
𝐶)) → 𝑤 ∈ (1st
‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))) |
65 | 64 | exp32 363 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝑥
∈ (1st ‘𝐴) → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (1st ‘(𝐵 +P
𝐶)) → 𝑤 ∈ (1st
‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))))) |
66 | 65 | com34 83 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝑥
∈ (1st ‘𝐴) → (𝑣 ∈ (1st ‘(𝐵 +P
𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))))) |
67 | 66 | impd 252 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → ((𝑥
∈ (1st ‘𝐴) ∧ 𝑣 ∈ (1st ‘(𝐵 +P
𝐶))) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))))) |
68 | 67 | rexlimdvv 2590 |
. . 3
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (∃𝑥 ∈ (1st ‘𝐴)∃𝑣 ∈ (1st ‘(𝐵 +P
𝐶))𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ (1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))) |
69 | 6, 68 | sylbid 149 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝑤
∈ (1st ‘(𝐴 ·P (𝐵 +P
𝐶))) → 𝑤 ∈ (1st
‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶))))) |
70 | 69 | ssrdv 3148 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (1st ‘(𝐴 ·P (𝐵 +P
𝐶))) ⊆
(1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))) |