ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz11 GIF version

Theorem uz11 9615
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem uz11
StepHypRef Expression
1 uzid 9606 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 eleq2 2257 . . . . . 6 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) ↔ 𝑀 ∈ (ℤ𝑁)))
3 eluzel2 9597 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
42, 3biimtrdi 163 . . . . 5 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ))
51, 4mpan9 281 . . . 4 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑁 ∈ ℤ)
6 uzid 9606 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 eleq2 2257 . . . . . . . . . . 11 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑁)))
86, 7imbitrrid 156 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑀)))
9 eluzle 9604 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
108, 9syl6 33 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑀𝑁))
111, 2imbitrid 154 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑁)))
12 eluzle 9604 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
1311, 12syl6 33 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑁𝑀))
1410, 13anim12d 335 . . . . . . . 8 ((ℤ𝑀) = (ℤ𝑁) → ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀)))
1514impl 380 . . . . . . 7 ((((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
1615ancoms 268 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁𝑁𝑀))
1716anassrs 400 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
18 zre 9321 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
19 zre 9321 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 letri3 8100 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2118, 19, 20syl2an 289 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2221adantlr 477 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2317, 22mpbird 167 . . . 4 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑀 = 𝑁)
245, 23mpdan 421 . . 3 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑀 = 𝑁)
2524ex 115 . 2 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) → 𝑀 = 𝑁))
26 fveq2 5554 . 2 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
2725, 26impbid1 142 1 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  cr 7871  cle 8055  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-neg 8193  df-z 9318  df-uz 9593
This theorem is referenced by:  fzopth  10127
  Copyright terms: Public domain W3C validator