Proof of Theorem uz11
| Step | Hyp | Ref
| Expression |
| 1 | | uzid 9632 |
. . . . 5
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 2 | | eleq2 2260 |
. . . . . 6
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑀 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ∈ (ℤ≥‘𝑁))) |
| 3 | | eluzel2 9623 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ∈ ℤ) |
| 4 | 2, 3 | biimtrdi 163 |
. . . . 5
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑀 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ)) |
| 5 | 1, 4 | mpan9 281 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧
(ℤ≥‘𝑀) = (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 6 | | uzid 9632 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
| 7 | | eleq2 2260 |
. . . . . . . . . . 11
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑁))) |
| 8 | 6, 7 | imbitrrid 156 |
. . . . . . . . . 10
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑀))) |
| 9 | | eluzle 9630 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| 10 | 8, 9 | syl6 33 |
. . . . . . . . 9
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑁 ∈ ℤ → 𝑀 ≤ 𝑁)) |
| 11 | 1, 2 | imbitrid 154 |
. . . . . . . . . 10
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑁))) |
| 12 | | eluzle 9630 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) |
| 13 | 11, 12 | syl6 33 |
. . . . . . . . 9
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → (𝑀 ∈ ℤ → 𝑁 ≤ 𝑀)) |
| 14 | 10, 13 | anim12d 335 |
. . . . . . . 8
⊢
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 15 | 14 | impl 380 |
. . . . . . 7
⊢
((((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) |
| 16 | 15 | ancoms 268 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ∧ 𝑁 ∈ ℤ)) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) |
| 17 | 16 | anassrs 400 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧
(ℤ≥‘𝑀) = (ℤ≥‘𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) |
| 18 | | zre 9347 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 19 | | zre 9347 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 20 | | letri3 8124 |
. . . . . . 7
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 21 | 18, 19, 20 | syl2an 289 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 22 | 21 | adantlr 477 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧
(ℤ≥‘𝑀) = (ℤ≥‘𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 23 | 17, 22 | mpbird 167 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧
(ℤ≥‘𝑀) = (ℤ≥‘𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑀 = 𝑁) |
| 24 | 5, 23 | mpdan 421 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧
(ℤ≥‘𝑀) = (ℤ≥‘𝑁)) → 𝑀 = 𝑁) |
| 25 | 24 | ex 115 |
. 2
⊢ (𝑀 ∈ ℤ →
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) → 𝑀 = 𝑁)) |
| 26 | | fveq2 5561 |
. 2
⊢ (𝑀 = 𝑁 → (ℤ≥‘𝑀) =
(ℤ≥‘𝑁)) |
| 27 | 25, 26 | impbid1 142 |
1
⊢ (𝑀 ∈ ℤ →
((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) |