ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt GIF version

Theorem efltlemlt 13335
Description: Lemma for eflt 13336. The converse of efltim 11639 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a (𝜑𝐴 ∈ ℝ)
efltlemlt.b (𝜑𝐵 ∈ ℝ)
efltlemlt.lt (𝜑 → (exp‘𝐴) < (exp‘𝐵))
efltlemlt.d (𝜑𝐷 ∈ ℝ+)
efltlemlt.ed (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
Assertion
Ref Expression
efltlemlt (𝜑𝐴 < 𝐵)

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5 (𝜑 → (exp‘𝐴) < (exp‘𝐵))
21ad2antrr 480 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐴) < (exp‘𝐵))
3 efltlemlt.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
54reefcld 11610 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐵) ∈ ℝ)
6 efltlemlt.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
76ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
87reefcld 11610 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐴) ∈ ℝ)
96adantr 274 . . . . . . 7 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → 𝐴 ∈ ℝ)
10 efltim 11639 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (exp‘𝐵) < (exp‘𝐴)))
113, 9, 10syl2an2r 585 . . . . . 6 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → (𝐵 < 𝐴 → (exp‘𝐵) < (exp‘𝐴)))
1211imp 123 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐵) < (exp‘𝐴))
135, 8, 12ltnsymd 8018 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → ¬ (exp‘𝐴) < (exp‘𝐵))
142, 13pm2.21dd 610 . . 3 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐴 < 𝐵)
156reefcld 11610 . . . . . . 7 (𝜑 → (exp‘𝐴) ∈ ℝ)
163reefcld 11610 . . . . . . 7 (𝜑 → (exp‘𝐵) ∈ ℝ)
1715, 16, 1ltled 8017 . . . . . . 7 (𝜑 → (exp‘𝐴) ≤ (exp‘𝐵))
1815, 16, 17abssuble0d 11119 . . . . . 6 (𝜑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) = ((exp‘𝐵) − (exp‘𝐴)))
1918ad2antrr 480 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘((exp‘𝐴) − (exp‘𝐵))) = ((exp‘𝐵) − (exp‘𝐴)))
20 efltlemlt.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2120rpred 9632 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
226, 3, 21absdifltd 11120 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 ↔ ((𝐵𝐷) < 𝐴𝐴 < (𝐵 + 𝐷))))
2322biimprd 157 . . . . . . 7 (𝜑 → (((𝐵𝐷) < 𝐴𝐴 < (𝐵 + 𝐷)) → (abs‘(𝐴𝐵)) < 𝐷))
2423impl 378 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘(𝐴𝐵)) < 𝐷)
25 efltlemlt.ed . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
2625ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
2724, 26mpd 13 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))
2819, 27eqbrtrrd 4006 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((exp‘𝐵) − (exp‘𝐴)) < ((exp‘𝐵) − (exp‘𝐴)))
2916, 15resubcld 8279 . . . . . 6 (𝜑 → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ)
3029ad2antrr 480 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ)
3130ltnrd 8010 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ¬ ((exp‘𝐵) − (exp‘𝐴)) < ((exp‘𝐵) − (exp‘𝐴)))
3228, 31pm2.21dd 610 . . 3 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → 𝐴 < 𝐵)
333, 20ltaddrpd 9666 . . . . 5 (𝜑𝐵 < (𝐵 + 𝐷))
343, 21readdcld 7928 . . . . . 6 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
35 axltwlin 7966 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐵 + 𝐷) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < (𝐵 + 𝐷) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷))))
363, 34, 6, 35syl3anc 1228 . . . . 5 (𝜑 → (𝐵 < (𝐵 + 𝐷) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷))))
3733, 36mpd 13 . . . 4 (𝜑 → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷)))
3837adantr 274 . . 3 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷)))
3914, 32, 38mpjaodan 788 . 2 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → 𝐴 < 𝐵)
40 simpr 109 . 2 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
413, 20ltsubrpd 9665 . . 3 (𝜑 → (𝐵𝐷) < 𝐵)
423, 21resubcld 8279 . . . 4 (𝜑 → (𝐵𝐷) ∈ ℝ)
43 axltwlin 7966 . . . 4 (((𝐵𝐷) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐷) < 𝐵 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵)))
4442, 3, 6, 43syl3anc 1228 . . 3 (𝜑 → ((𝐵𝐷) < 𝐵 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵)))
4541, 44mpd 13 . 2 (𝜑 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵))
4639, 40, 45mpjaodan 788 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752   + caddc 7756   < clt 7933  cmin 8069  +crp 9589  abscabs 10939  expce 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589
This theorem is referenced by:  eflt  13336
  Copyright terms: Public domain W3C validator