ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt GIF version

Theorem efltlemlt 13489
Description: Lemma for eflt 13490. The converse of efltim 11661 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a (𝜑𝐴 ∈ ℝ)
efltlemlt.b (𝜑𝐵 ∈ ℝ)
efltlemlt.lt (𝜑 → (exp‘𝐴) < (exp‘𝐵))
efltlemlt.d (𝜑𝐷 ∈ ℝ+)
efltlemlt.ed (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
Assertion
Ref Expression
efltlemlt (𝜑𝐴 < 𝐵)

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5 (𝜑 → (exp‘𝐴) < (exp‘𝐵))
21ad2antrr 485 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐴) < (exp‘𝐵))
3 efltlemlt.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
54reefcld 11632 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐵) ∈ ℝ)
6 efltlemlt.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
76ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
87reefcld 11632 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐴) ∈ ℝ)
96adantr 274 . . . . . . 7 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → 𝐴 ∈ ℝ)
10 efltim 11661 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (exp‘𝐵) < (exp‘𝐴)))
113, 9, 10syl2an2r 590 . . . . . 6 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → (𝐵 < 𝐴 → (exp‘𝐵) < (exp‘𝐴)))
1211imp 123 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐵) < (exp‘𝐴))
135, 8, 12ltnsymd 8039 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → ¬ (exp‘𝐴) < (exp‘𝐵))
142, 13pm2.21dd 615 . . 3 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐴 < 𝐵)
156reefcld 11632 . . . . . . 7 (𝜑 → (exp‘𝐴) ∈ ℝ)
163reefcld 11632 . . . . . . 7 (𝜑 → (exp‘𝐵) ∈ ℝ)
1715, 16, 1ltled 8038 . . . . . . 7 (𝜑 → (exp‘𝐴) ≤ (exp‘𝐵))
1815, 16, 17abssuble0d 11141 . . . . . 6 (𝜑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) = ((exp‘𝐵) − (exp‘𝐴)))
1918ad2antrr 485 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘((exp‘𝐴) − (exp‘𝐵))) = ((exp‘𝐵) − (exp‘𝐴)))
20 efltlemlt.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2120rpred 9653 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
226, 3, 21absdifltd 11142 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 ↔ ((𝐵𝐷) < 𝐴𝐴 < (𝐵 + 𝐷))))
2322biimprd 157 . . . . . . 7 (𝜑 → (((𝐵𝐷) < 𝐴𝐴 < (𝐵 + 𝐷)) → (abs‘(𝐴𝐵)) < 𝐷))
2423impl 378 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘(𝐴𝐵)) < 𝐷)
25 efltlemlt.ed . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
2625ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
2724, 26mpd 13 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))
2819, 27eqbrtrrd 4013 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((exp‘𝐵) − (exp‘𝐴)) < ((exp‘𝐵) − (exp‘𝐴)))
2916, 15resubcld 8300 . . . . . 6 (𝜑 → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ)
3029ad2antrr 485 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ)
3130ltnrd 8031 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ¬ ((exp‘𝐵) − (exp‘𝐴)) < ((exp‘𝐵) − (exp‘𝐴)))
3228, 31pm2.21dd 615 . . 3 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → 𝐴 < 𝐵)
333, 20ltaddrpd 9687 . . . . 5 (𝜑𝐵 < (𝐵 + 𝐷))
343, 21readdcld 7949 . . . . . 6 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
35 axltwlin 7987 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐵 + 𝐷) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < (𝐵 + 𝐷) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷))))
363, 34, 6, 35syl3anc 1233 . . . . 5 (𝜑 → (𝐵 < (𝐵 + 𝐷) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷))))
3733, 36mpd 13 . . . 4 (𝜑 → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷)))
3837adantr 274 . . 3 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷)))
3914, 32, 38mpjaodan 793 . 2 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → 𝐴 < 𝐵)
40 simpr 109 . 2 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
413, 20ltsubrpd 9686 . . 3 (𝜑 → (𝐵𝐷) < 𝐵)
423, 21resubcld 8300 . . . 4 (𝜑 → (𝐵𝐷) ∈ ℝ)
43 axltwlin 7987 . . . 4 (((𝐵𝐷) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐷) < 𝐵 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵)))
4442, 3, 6, 43syl3anc 1233 . . 3 (𝜑 → ((𝐵𝐷) < 𝐵 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵)))
4541, 44mpd 13 . 2 (𝜑 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵))
4639, 40, 45mpjaodan 793 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773   + caddc 7777   < clt 7954  cmin 8090  +crp 9610  abscabs 10961  expce 11605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611
This theorem is referenced by:  eflt  13490
  Copyright terms: Public domain W3C validator