ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltlemlt GIF version

Theorem efltlemlt 15321
Description: Lemma for eflt 15322. The converse of efltim 12084 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
Hypotheses
Ref Expression
efltlemlt.a (𝜑𝐴 ∈ ℝ)
efltlemlt.b (𝜑𝐵 ∈ ℝ)
efltlemlt.lt (𝜑 → (exp‘𝐴) < (exp‘𝐵))
efltlemlt.d (𝜑𝐷 ∈ ℝ+)
efltlemlt.ed (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
Assertion
Ref Expression
efltlemlt (𝜑𝐴 < 𝐵)

Proof of Theorem efltlemlt
StepHypRef Expression
1 efltlemlt.lt . . . . 5 (𝜑 → (exp‘𝐴) < (exp‘𝐵))
21ad2antrr 488 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐴) < (exp‘𝐵))
3 efltlemlt.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
54reefcld 12055 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐵) ∈ ℝ)
6 efltlemlt.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
76ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
87reefcld 12055 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐴) ∈ ℝ)
96adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → 𝐴 ∈ ℝ)
10 efltim 12084 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (exp‘𝐵) < (exp‘𝐴)))
113, 9, 10syl2an2r 595 . . . . . 6 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → (𝐵 < 𝐴 → (exp‘𝐵) < (exp‘𝐴)))
1211imp 124 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → (exp‘𝐵) < (exp‘𝐴))
135, 8, 12ltnsymd 8212 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → ¬ (exp‘𝐴) < (exp‘𝐵))
142, 13pm2.21dd 621 . . 3 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐵 < 𝐴) → 𝐴 < 𝐵)
156reefcld 12055 . . . . . . 7 (𝜑 → (exp‘𝐴) ∈ ℝ)
163reefcld 12055 . . . . . . 7 (𝜑 → (exp‘𝐵) ∈ ℝ)
1715, 16, 1ltled 8211 . . . . . . 7 (𝜑 → (exp‘𝐴) ≤ (exp‘𝐵))
1815, 16, 17abssuble0d 11563 . . . . . 6 (𝜑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) = ((exp‘𝐵) − (exp‘𝐴)))
1918ad2antrr 488 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘((exp‘𝐴) − (exp‘𝐵))) = ((exp‘𝐵) − (exp‘𝐴)))
20 efltlemlt.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2120rpred 9838 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
226, 3, 21absdifltd 11564 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 ↔ ((𝐵𝐷) < 𝐴𝐴 < (𝐵 + 𝐷))))
2322biimprd 158 . . . . . . 7 (𝜑 → (((𝐵𝐷) < 𝐴𝐴 < (𝐵 + 𝐷)) → (abs‘(𝐴𝐵)) < 𝐷))
2423impl 380 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘(𝐴𝐵)) < 𝐷)
25 efltlemlt.ed . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
2625ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))
2724, 26mpd 13 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))
2819, 27eqbrtrrd 4075 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((exp‘𝐵) − (exp‘𝐴)) < ((exp‘𝐵) − (exp‘𝐴)))
2916, 15resubcld 8473 . . . . . 6 (𝜑 → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ)
3029ad2antrr 488 . . . . 5 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ)
3130ltnrd 8204 . . . 4 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → ¬ ((exp‘𝐵) − (exp‘𝐴)) < ((exp‘𝐵) − (exp‘𝐴)))
3228, 31pm2.21dd 621 . . 3 (((𝜑 ∧ (𝐵𝐷) < 𝐴) ∧ 𝐴 < (𝐵 + 𝐷)) → 𝐴 < 𝐵)
333, 20ltaddrpd 9872 . . . . 5 (𝜑𝐵 < (𝐵 + 𝐷))
343, 21readdcld 8122 . . . . . 6 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
35 axltwlin 8160 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐵 + 𝐷) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < (𝐵 + 𝐷) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷))))
363, 34, 6, 35syl3anc 1250 . . . . 5 (𝜑 → (𝐵 < (𝐵 + 𝐷) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷))))
3733, 36mpd 13 . . . 4 (𝜑 → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷)))
3837adantr 276 . . 3 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → (𝐵 < 𝐴𝐴 < (𝐵 + 𝐷)))
3914, 32, 38mpjaodan 800 . 2 ((𝜑 ∧ (𝐵𝐷) < 𝐴) → 𝐴 < 𝐵)
40 simpr 110 . 2 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
413, 20ltsubrpd 9871 . . 3 (𝜑 → (𝐵𝐷) < 𝐵)
423, 21resubcld 8473 . . . 4 (𝜑 → (𝐵𝐷) ∈ ℝ)
43 axltwlin 8160 . . . 4 (((𝐵𝐷) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐷) < 𝐵 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵)))
4442, 3, 6, 43syl3anc 1250 . . 3 (𝜑 → ((𝐵𝐷) < 𝐵 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵)))
4541, 44mpd 13 . 2 (𝜑 → ((𝐵𝐷) < 𝐴𝐴 < 𝐵))
4639, 40, 45mpjaodan 800 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cr 7944   + caddc 7948   < clt 8127  cmin 8263  +crp 9795  abscabs 11383  expce 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-ico 10036  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034
This theorem is referenced by:  eflt  15322
  Copyright terms: Public domain W3C validator