ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco2 GIF version

Theorem foco2 5722
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
foco2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)

Proof of Theorem foco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 987 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵𝐶)
2 foelrn 5721 . . . . . 6 (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧))
3 ffvelrn 5618 . . . . . . . . . 10 ((𝐺:𝐴𝐵𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
43adantll 468 . . . . . . . . 9 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
5 fvco3 5557 . . . . . . . . . 10 ((𝐺:𝐴𝐵𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
65adantll 468 . . . . . . . . 9 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
7 fveq2 5486 . . . . . . . . . . 11 (𝑥 = (𝐺𝑧) → (𝐹𝑥) = (𝐹‘(𝐺𝑧)))
87eqeq2d 2177 . . . . . . . . . 10 (𝑥 = (𝐺𝑧) → (((𝐹𝐺)‘𝑧) = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))))
98rspcev 2830 . . . . . . . . 9 (((𝐺𝑧) ∈ 𝐵 ∧ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
104, 6, 9syl2anc 409 . . . . . . . 8 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
11 eqeq1 2172 . . . . . . . . 9 (𝑦 = ((𝐹𝐺)‘𝑧) → (𝑦 = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
1211rexbidv 2467 . . . . . . . 8 (𝑦 = ((𝐹𝐺)‘𝑧) → (∃𝑥𝐵 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
1310, 12syl5ibrcom 156 . . . . . . 7 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → (𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1413rexlimdva 2583 . . . . . 6 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
152, 14syl5 32 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1615impl 378 . . . 4 ((((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (𝐹𝐺):𝐴onto𝐶) ∧ 𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
1716ralrimiva 2539 . . 3 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
18173impa 1184 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
19 dffo3 5632 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥)))
201, 18, 19sylanbrc 414 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  ccom 4608  wf 5184  ontowfo 5186  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator