Step | Hyp | Ref
| Expression |
1 | | simp1 992 |
. 2
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵⟶𝐶) |
2 | | foelrn 5732 |
. . . . . 6
⊢ (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧)) |
3 | | ffvelrn 5629 |
. . . . . . . . . 10
⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐵) |
4 | 3 | adantll 473 |
. . . . . . . . 9
⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐵) |
5 | | fvco3 5567 |
. . . . . . . . . 10
⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) |
6 | 5 | adantll 473 |
. . . . . . . . 9
⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ 𝑧 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) |
7 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑧) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑧))) |
8 | 7 | eqeq2d 2182 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺‘𝑧) → (((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥) ↔ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧)))) |
9 | 8 | rspcev 2834 |
. . . . . . . . 9
⊢ (((𝐺‘𝑧) ∈ 𝐵 ∧ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
10 | 4, 6, 9 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
11 | | eqeq1 2177 |
. . . . . . . . 9
⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (𝑦 = (𝐹‘𝑥) ↔ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) |
12 | 11 | rexbidv 2471 |
. . . . . . . 8
⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) |
13 | 10, 12 | syl5ibrcom 156 |
. . . . . . 7
⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ 𝑧 ∈ 𝐴) → (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
14 | 13 | rexlimdva 2587 |
. . . . . 6
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
15 | 2, 14 | syl5 32 |
. . . . 5
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
16 | 15 | impl 378 |
. . . 4
⊢ ((((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
17 | 16 | ralrimiva 2543 |
. . 3
⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
18 | 17 | 3impa 1189 |
. 2
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
19 | | dffo3 5643 |
. 2
⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
20 | 1, 18, 19 | sylanbrc 415 |
1
⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |