ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco2 GIF version

Theorem foco2 5800
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
foco2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)

Proof of Theorem foco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵𝐶)
2 foelrn 5799 . . . . . 6 (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧))
3 ffvelcdm 5695 . . . . . . . . . 10 ((𝐺:𝐴𝐵𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
43adantll 476 . . . . . . . . 9 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
5 fvco3 5632 . . . . . . . . . 10 ((𝐺:𝐴𝐵𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
65adantll 476 . . . . . . . . 9 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
7 fveq2 5558 . . . . . . . . . . 11 (𝑥 = (𝐺𝑧) → (𝐹𝑥) = (𝐹‘(𝐺𝑧)))
87eqeq2d 2208 . . . . . . . . . 10 (𝑥 = (𝐺𝑧) → (((𝐹𝐺)‘𝑧) = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))))
98rspcev 2868 . . . . . . . . 9 (((𝐺𝑧) ∈ 𝐵 ∧ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
104, 6, 9syl2anc 411 . . . . . . . 8 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
11 eqeq1 2203 . . . . . . . . 9 (𝑦 = ((𝐹𝐺)‘𝑧) → (𝑦 = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
1211rexbidv 2498 . . . . . . . 8 (𝑦 = ((𝐹𝐺)‘𝑧) → (∃𝑥𝐵 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
1310, 12syl5ibrcom 157 . . . . . . 7 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ 𝑧𝐴) → (𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1413rexlimdva 2614 . . . . . 6 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
152, 14syl5 32 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1615impl 380 . . . 4 ((((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (𝐹𝐺):𝐴onto𝐶) ∧ 𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
1716ralrimiva 2570 . . 3 (((𝐹:𝐵𝐶𝐺:𝐴𝐵) ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
18173impa 1196 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
19 dffo3 5709 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥)))
201, 18, 19sylanbrc 417 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  ccom 4667  wf 5254  ontowfo 5256  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator