ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in13 GIF version

Theorem in13 3385
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in13 (𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))

Proof of Theorem in13
StepHypRef Expression
1 in32 3384 . 2 ((𝐵𝐶) ∩ 𝐴) = ((𝐵𝐴) ∩ 𝐶)
2 incom 3364 . 2 (𝐴 ∩ (𝐵𝐶)) = ((𝐵𝐶) ∩ 𝐴)
3 incom 3364 . 2 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
41, 2, 33eqtr4i 2235 1 (𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cin 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator