![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > incom | GIF version |
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | elin 3343 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3343 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
5 | 4 | eqriv 2190 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∩ cin 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 |
This theorem is referenced by: ineq2 3355 dfss1 3364 in12 3371 in32 3372 in13 3373 in31 3374 inss2 3381 sslin 3386 inss 3390 indif1 3405 indifcom 3406 indir 3409 symdif1 3425 dfrab2 3435 0in 3483 disjr 3497 ssdifin0 3529 difdifdirss 3532 uneqdifeqim 3533 diftpsn3 3760 iunin1 3978 iinin1m 3983 riinm 3986 rintm 4006 inex2 4165 onintexmid 4606 resiun1 4962 dmres 4964 rescom 4968 resima2 4977 xpssres 4978 resindm 4985 resdmdfsn 4986 resopab 4987 imadisj 5028 ndmima 5043 intirr 5053 djudisj 5094 imainrect 5112 dmresv 5125 resdmres 5158 funimaexg 5339 fnresdisj 5365 fnimaeq0 5376 resasplitss 5434 f0rn0 5449 fvun2 5625 ressnop0 5740 fvsnun1 5756 fsnunfv 5760 offres 6189 smores3 6348 phplem2 6911 unfiin 6984 xpfi 6988 endjusym 7157 djucomen 7278 fzpreddisj 10140 fseq1p1m1 10163 hashunlem 10878 zfz1isolem1 10914 fprodsplit 11743 znnen 12558 setsfun 12656 setsfun0 12657 setsslid 12672 ressressg 12696 restin 14355 metreslem 14559 bdinex2 15462 |
Copyright terms: Public domain | W3C validator |