![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > incom | GIF version |
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | elin 3225 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3225 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
5 | 4 | eqriv 2112 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∩ cin 3036 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-in 3043 |
This theorem is referenced by: ineq2 3237 dfss1 3246 in12 3253 in32 3254 in13 3255 in31 3256 inss2 3263 sslin 3268 inss 3272 indif1 3287 indifcom 3288 indir 3291 symdif1 3307 dfrab2 3317 0in 3364 disjr 3378 ssdifin0 3410 difdifdirss 3413 uneqdifeqim 3414 diftpsn3 3627 iunin1 3843 iinin1m 3848 riinm 3851 rintm 3871 inex2 4023 onintexmid 4447 resiun1 4796 dmres 4798 rescom 4802 resima2 4811 xpssres 4812 resindm 4819 resdmdfsn 4820 resopab 4821 imadisj 4859 ndmima 4874 intirr 4883 djudisj 4924 imainrect 4942 dmresv 4955 resdmres 4988 funimaexg 5165 fnresdisj 5191 fnimaeq0 5202 resasplitss 5260 f0rn0 5275 fvun2 5442 ressnop0 5555 fvsnun1 5571 fsnunfv 5575 offres 5987 smores3 6144 phplem2 6700 unfiin 6767 xpfi 6771 endjusym 6933 djucomen 7020 fzpreddisj 9744 fseq1p1m1 9767 hashunlem 10443 zfz1isolem1 10476 znnen 11756 setsfun 11837 setsfun0 11838 setsslid 11852 restin 12188 metreslem 12369 bdinex2 12790 |
Copyright terms: Public domain | W3C validator |