| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | GIF version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | elin 3387 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | elin 3387 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 5 | 4 | eqriv 2226 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: ineq2 3399 dfss1 3408 in12 3415 in32 3416 in13 3417 in31 3418 inss2 3425 sslin 3430 inss 3434 indif1 3449 indifcom 3450 indir 3453 symdif1 3469 dfrab2 3479 0in 3527 disjr 3541 ssdifin0 3573 difdifdirss 3576 uneqdifeqim 3577 diftpsn3 3808 iunin1 4029 iinin1m 4034 riinm 4037 rintm 4057 inex2 4218 onintexmid 4664 resiun1 5023 dmres 5025 rescom 5029 resima2 5038 xpssres 5039 resindm 5046 resdmdfsn 5047 resopab 5048 imadisj 5089 ndmima 5104 intirr 5114 djudisj 5155 imainrect 5173 dmresv 5186 resdmres 5219 funimaexg 5404 fnresdisj 5432 fnimaeq0 5444 resasplitss 5504 f0rn0 5519 fvun2 5700 ressnop0 5819 fvsnun1 5835 fsnunfv 5839 offres 6278 smores3 6437 phplem2 7010 unfiin 7084 xpfi 7090 endjusym 7259 djucomen 7394 fzpreddisj 10263 fseq1p1m1 10286 hashunlem 11021 zfz1isolem1 11057 fprodsplit 12103 znnen 12964 setsfun 13062 setsfun0 13063 setsslid 13078 ressressg 13103 restin 14844 metreslem 15048 perfectlem2 15668 bdinex2 16221 |
| Copyright terms: Public domain | W3C validator |