Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > incom | GIF version |
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | elin 3310 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3310 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
5 | 4 | eqriv 2167 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: ineq2 3322 dfss1 3331 in12 3338 in32 3339 in13 3340 in31 3341 inss2 3348 sslin 3353 inss 3357 indif1 3372 indifcom 3373 indir 3376 symdif1 3392 dfrab2 3402 0in 3450 disjr 3464 ssdifin0 3496 difdifdirss 3499 uneqdifeqim 3500 diftpsn3 3721 iunin1 3937 iinin1m 3942 riinm 3945 rintm 3965 inex2 4124 onintexmid 4557 resiun1 4910 dmres 4912 rescom 4916 resima2 4925 xpssres 4926 resindm 4933 resdmdfsn 4934 resopab 4935 imadisj 4973 ndmima 4988 intirr 4997 djudisj 5038 imainrect 5056 dmresv 5069 resdmres 5102 funimaexg 5282 fnresdisj 5308 fnimaeq0 5319 resasplitss 5377 f0rn0 5392 fvun2 5563 ressnop0 5677 fvsnun1 5693 fsnunfv 5697 offres 6114 smores3 6272 phplem2 6831 unfiin 6903 xpfi 6907 endjusym 7073 djucomen 7193 fzpreddisj 10027 fseq1p1m1 10050 hashunlem 10739 zfz1isolem1 10775 fprodsplit 11560 znnen 12353 setsfun 12451 setsfun0 12452 setsslid 12466 restin 12970 metreslem 13174 bdinex2 13935 |
Copyright terms: Public domain | W3C validator |