Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > incom | GIF version |
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | elin 3305 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3305 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
5 | 4 | eqriv 2162 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: ineq2 3317 dfss1 3326 in12 3333 in32 3334 in13 3335 in31 3336 inss2 3343 sslin 3348 inss 3352 indif1 3367 indifcom 3368 indir 3371 symdif1 3387 dfrab2 3397 0in 3444 disjr 3458 ssdifin0 3490 difdifdirss 3493 uneqdifeqim 3494 diftpsn3 3714 iunin1 3930 iinin1m 3935 riinm 3938 rintm 3958 inex2 4117 onintexmid 4550 resiun1 4903 dmres 4905 rescom 4909 resima2 4918 xpssres 4919 resindm 4926 resdmdfsn 4927 resopab 4928 imadisj 4966 ndmima 4981 intirr 4990 djudisj 5031 imainrect 5049 dmresv 5062 resdmres 5095 funimaexg 5272 fnresdisj 5298 fnimaeq0 5309 resasplitss 5367 f0rn0 5382 fvun2 5553 ressnop0 5666 fvsnun1 5682 fsnunfv 5686 offres 6103 smores3 6261 phplem2 6819 unfiin 6891 xpfi 6895 endjusym 7061 djucomen 7172 fzpreddisj 10006 fseq1p1m1 10029 hashunlem 10717 zfz1isolem1 10753 fprodsplit 11538 znnen 12331 setsfun 12429 setsfun0 12430 setsslid 12444 restin 12816 metreslem 13020 bdinex2 13782 |
Copyright terms: Public domain | W3C validator |