| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | GIF version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | elin 3364 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | elin 3364 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 5 | 4 | eqriv 2204 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∩ cin 3173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: ineq2 3376 dfss1 3385 in12 3392 in32 3393 in13 3394 in31 3395 inss2 3402 sslin 3407 inss 3411 indif1 3426 indifcom 3427 indir 3430 symdif1 3446 dfrab2 3456 0in 3504 disjr 3518 ssdifin0 3550 difdifdirss 3553 uneqdifeqim 3554 diftpsn3 3785 iunin1 4006 iinin1m 4011 riinm 4014 rintm 4034 inex2 4195 onintexmid 4639 resiun1 4997 dmres 4999 rescom 5003 resima2 5012 xpssres 5013 resindm 5020 resdmdfsn 5021 resopab 5022 imadisj 5063 ndmima 5078 intirr 5088 djudisj 5129 imainrect 5147 dmresv 5160 resdmres 5193 funimaexg 5377 fnresdisj 5405 fnimaeq0 5417 resasplitss 5477 f0rn0 5492 fvun2 5669 ressnop0 5788 fvsnun1 5804 fsnunfv 5808 offres 6243 smores3 6402 phplem2 6975 unfiin 7049 xpfi 7055 endjusym 7224 djucomen 7359 fzpreddisj 10228 fseq1p1m1 10251 hashunlem 10986 zfz1isolem1 11022 fprodsplit 12023 znnen 12884 setsfun 12982 setsfun0 12983 setsslid 12998 ressressg 13022 restin 14763 metreslem 14967 perfectlem2 15587 bdinex2 16035 |
| Copyright terms: Public domain | W3C validator |