| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | GIF version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | elin 3356 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | elin 3356 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 5 | 4 | eqriv 2202 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∩ cin 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: ineq2 3368 dfss1 3377 in12 3384 in32 3385 in13 3386 in31 3387 inss2 3394 sslin 3399 inss 3403 indif1 3418 indifcom 3419 indir 3422 symdif1 3438 dfrab2 3448 0in 3496 disjr 3510 ssdifin0 3542 difdifdirss 3545 uneqdifeqim 3546 diftpsn3 3774 iunin1 3992 iinin1m 3997 riinm 4000 rintm 4020 inex2 4179 onintexmid 4621 resiun1 4978 dmres 4980 rescom 4984 resima2 4993 xpssres 4994 resindm 5001 resdmdfsn 5002 resopab 5003 imadisj 5044 ndmima 5059 intirr 5069 djudisj 5110 imainrect 5128 dmresv 5141 resdmres 5174 funimaexg 5358 fnresdisj 5386 fnimaeq0 5397 resasplitss 5455 f0rn0 5470 fvun2 5646 ressnop0 5765 fvsnun1 5781 fsnunfv 5785 offres 6220 smores3 6379 phplem2 6950 unfiin 7023 xpfi 7029 endjusym 7198 djucomen 7328 fzpreddisj 10193 fseq1p1m1 10216 hashunlem 10949 zfz1isolem1 10985 fprodsplit 11908 znnen 12769 setsfun 12867 setsfun0 12868 setsslid 12883 ressressg 12907 restin 14648 metreslem 14852 perfectlem2 15472 bdinex2 15836 |
| Copyright terms: Public domain | W3C validator |