| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | GIF version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom | ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | elin 3346 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | elin 3346 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 5 | 4 | eqriv 2193 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: ineq2 3358 dfss1 3367 in12 3374 in32 3375 in13 3376 in31 3377 inss2 3384 sslin 3389 inss 3393 indif1 3408 indifcom 3409 indir 3412 symdif1 3428 dfrab2 3438 0in 3486 disjr 3500 ssdifin0 3532 difdifdirss 3535 uneqdifeqim 3536 diftpsn3 3763 iunin1 3981 iinin1m 3986 riinm 3989 rintm 4009 inex2 4168 onintexmid 4609 resiun1 4965 dmres 4967 rescom 4971 resima2 4980 xpssres 4981 resindm 4988 resdmdfsn 4989 resopab 4990 imadisj 5031 ndmima 5046 intirr 5056 djudisj 5097 imainrect 5115 dmresv 5128 resdmres 5161 funimaexg 5342 fnresdisj 5368 fnimaeq0 5379 resasplitss 5437 f0rn0 5452 fvun2 5628 ressnop0 5743 fvsnun1 5759 fsnunfv 5763 offres 6192 smores3 6351 phplem2 6914 unfiin 6987 xpfi 6993 endjusym 7162 djucomen 7283 fzpreddisj 10146 fseq1p1m1 10169 hashunlem 10896 zfz1isolem1 10932 fprodsplit 11762 znnen 12615 setsfun 12713 setsfun0 12714 setsslid 12729 ressressg 12753 restin 14412 metreslem 14616 perfectlem2 15236 bdinex2 15546 |
| Copyright terms: Public domain | W3C validator |