HomeHome Intuitionistic Logic Explorer
Theorem List (p. 34 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3301-3400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminss2 3301 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
(𝐴𝐵) ⊆ 𝐵
 
Theoremssin 3302 Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
 
Theoremssini 3303 An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
𝐴𝐵    &   𝐴𝐶       𝐴 ⊆ (𝐵𝐶)
 
Theoremssind 3304 A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐴 ⊆ (𝐵𝐶))
 
Theoremssrin 3305 Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremsslin 3306 Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremssrind 3307 Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremss2in 3308 Intersection of subclasses. (Contributed by NM, 5-May-2000.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
 
Theoremssinss1 3309 Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.)
(𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
 
Theoreminss 3310 Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
 
2.1.13.4  Combinations of difference, union, and intersection of two classes
 
Theoremunabs 3311 Absorption law for union. (Contributed by NM, 16-Apr-2006.)
(𝐴 ∪ (𝐴𝐵)) = 𝐴
 
Theoreminabs 3312 Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
(𝐴 ∩ (𝐴𝐵)) = 𝐴
 
Theoremdfss4st 3313* Subclass defined in terms of class difference. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(∀𝑥STAB 𝑥𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
 
Theoremssddif 3314 Double complement and subset. Similar to ddifss 3318 but inside a class 𝐵 instead of the universal class V. In classical logic the subset operation on the right hand side could be an equality (that is, 𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴). (Contributed by Jim Kingdon, 24-Jul-2018.)
(𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))
 
Theoremunssdif 3315 Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
(𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
 
Theoreminssdif 3316 Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
(𝐴𝐵) ⊆ (𝐴 ∖ (V ∖ 𝐵))
 
Theoremdifin 3317 Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
 
Theoremddifss 3318 Double complement under universal class. In classical logic (or given an additional hypothesis, as in ddifnel 3211), this is equality rather than subset. (Contributed by Jim Kingdon, 24-Jul-2018.)
𝐴 ⊆ (V ∖ (V ∖ 𝐴))
 
Theoremunssin 3319 Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
(𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
 
Theoreminssun 3320 Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
(𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
 
Theoreminssddif 3321 Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
(𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))
 
Theoreminvdif 3322 Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
 
Theoremindif 3323 Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
 
Theoremindif2 3324 Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremindif1 3325 Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremindifcom 3326 Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
(𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
 
Theoremindi 3327 Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremundi 3328 Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremindir 3329 Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremundir 3330 Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremuneqin 3331 Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
 
Theoremdifundi 3332 Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremdifundir 3333 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremdifindiss 3334 Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵𝐶))
 
Theoremdifindir 3335 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremindifdir 3336 Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
 
Theoremdifdif2ss 3337 Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵𝐶))
 
Theoremundm 3338 De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
(V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
 
Theoremindmss 3339 De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.)
((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴𝐵))
 
Theoremdifun1 3340 A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremundif3ss 3341 A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
(𝐴 ∪ (𝐵𝐶)) ⊆ ((𝐴𝐵) ∖ (𝐶𝐴))
 
Theoremdifin2 3342 Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
 
Theoremdif32 3343 Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
 
Theoremdifabs 3344 Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
 
Theoremsymdif1 3345 Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐴𝐵) ∖ (𝐴𝐵))
 
2.1.13.5  Class abstractions with difference, union, and intersection of two classes
 
Theoremsymdifxor 3346* Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.)
((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoremunab 3347 Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
 
Theoreminab 3348 Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
 
Theoremdifab 3349 Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoremnotab 3350 A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
{𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
 
Theoremunrab 3351 Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theoreminrab 3352 Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theoreminrab2 3353* Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
 
Theoremdifrab 3354 Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoremdfrab2 3355* Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
{𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
 
Theoremdfrab3 3356* Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
{𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
 
Theoremnotrab 3357* Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
 
Theoremdfrab3ss 3358* Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
(𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
 
Theoremrabun2 3359 Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
{𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})
 
2.1.13.6  Restricted uniqueness with difference, union, and intersection
 
Theoremreuss2 3360* Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
(((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
 
Theoremreuss 3361* Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
 
Theoremreuun1 3362* Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
((∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓)) → ∃!𝑥𝐴 𝜑)
 
Theoremreuun2 3363* Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
(¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
 
Theoremreupick 3364* Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
(((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
 
Theoremreupick3 3365* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
 
Theoremreupick2 3366* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
(((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
 
2.1.14  The empty set
 
Syntaxc0 3367 Extend class notation to include the empty set.
class
 
Definitiondf-nul 3368 Define the empty set. Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 3369. (Contributed by NM, 5-Aug-1993.)
∅ = (V ∖ V)
 
Theoremdfnul2 3369 Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
 
Theoremdfnul3 3370 Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
 
Theoremnoel 3371 The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
¬ 𝐴 ∈ ∅
 
Theoremn0i 3372 If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2705. (Contributed by NM, 31-Dec-1993.)
(𝐵𝐴 → ¬ 𝐴 = ∅)
 
Theoremne0i 3373 If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2705. (Contributed by NM, 31-Dec-1993.)
(𝐵𝐴𝐴 ≠ ∅)
 
Theoremne0d 3374 Deduction form of ne0i 3373. If a class has elements, then it is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐵𝐴)       (𝜑𝐴 ≠ ∅)
 
Theoremn0ii 3375 If a class has elements, then it is not empty. Inference associated with n0i 3372. (Contributed by BJ, 15-Jul-2021.)
𝐴𝐵        ¬ 𝐵 = ∅
 
Theoremne0ii 3376 If a class has elements, then it is nonempty. Inference associated with ne0i 3373. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐴𝐵       𝐵 ≠ ∅
 
Theoremvn0 3377 The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
V ≠ ∅
 
Theoremvn0m 3378 The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
𝑥 𝑥 ∈ V
 
Theoremn0rf 3379 An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class 𝐴 nonempty if 𝐴 ≠ ∅ and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3380 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by Jim Kingdon, 31-Jul-2018.)
𝑥𝐴       (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
 
Theoremn0r 3380* An inhabited class is nonempty. See n0rf 3379 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
(∃𝑥 𝑥𝐴𝐴 ≠ ∅)
 
Theoremneq0r 3381* An inhabited class is nonempty. See n0rf 3379 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
(∃𝑥 𝑥𝐴 → ¬ 𝐴 = ∅)
 
Theoremreximdva0m 3382* Restricted existence deduced from inhabited class. (Contributed by Jim Kingdon, 31-Jul-2018.)
((𝜑𝑥𝐴) → 𝜓)       ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥𝐴 𝜓)
 
Theoremn0mmoeu 3383* A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.)
(∃𝑥 𝑥𝐴 → (∃*𝑥 𝑥𝐴 ↔ ∃!𝑥 𝑥𝐴))
 
Theoremrex0 3384 Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
¬ ∃𝑥 ∈ ∅ 𝜑
 
Theoremeq0 3385* The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.)
(𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
 
Theoremeqv 3386* The universe contains every set. (Contributed by NM, 11-Sep-2006.)
(𝐴 = V ↔ ∀𝑥 𝑥𝐴)
 
Theoremnotm0 3387* A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
(¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
 
Theoremnel0 3388* From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.)
¬ 𝑥𝐴       𝐴 = ∅
 
Theorem0el 3389* Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
(∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
 
Theoremabvor0dc 3390* The class builder of a decidable proposition not containing the abstraction variable is either the universal class or the empty set. (Contributed by Jim Kingdon, 1-Aug-2018.)
(DECID 𝜑 → ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
 
Theoremabn0r 3391 Nonempty class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
(∃𝑥𝜑 → {𝑥𝜑} ≠ ∅)
 
Theoremabn0m 3392* Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.)
(∃𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
 
Theoremrabn0r 3393 Nonempty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
(∃𝑥𝐴 𝜑 → {𝑥𝐴𝜑} ≠ ∅)
 
Theoremrabn0m 3394* Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
(∃𝑦 𝑦 ∈ {𝑥𝐴𝜑} ↔ ∃𝑥𝐴 𝜑)
 
Theoremrab0 3395 Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
{𝑥 ∈ ∅ ∣ 𝜑} = ∅
 
Theoremrabeq0 3396 Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥𝐴 ¬ 𝜑)
 
Theoremabeq0 3397 Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
 
Theoremrabxmdc 3398* Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
(∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
 
Theoremrabnc 3399* Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
 
Theoremun0 3400 The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
(𝐴 ∪ ∅) = 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13439
  Copyright terms: Public domain < Previous  Next >