HomeHome Intuitionistic Logic Explorer
Theorem List (p. 34 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3301-3400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunss 3301 The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
 
Theoremunssi 3302 An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.)
𝐴𝐶    &   𝐵𝐶       (𝐴𝐵) ⊆ 𝐶
 
Theoremunssd 3303 A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐴𝐵) ⊆ 𝐶)
 
Theoremunssad 3304 If (𝐴𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 3301. Partial converse of unssd 3303. (Contributed by David Moews, 1-May-2017.)
(𝜑 → (𝐴𝐵) ⊆ 𝐶)       (𝜑𝐴𝐶)
 
Theoremunssbd 3305 If (𝐴𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 3301. Partial converse of unssd 3303. (Contributed by David Moews, 1-May-2017.)
(𝜑 → (𝐴𝐵) ⊆ 𝐶)       (𝜑𝐵𝐶)
 
Theoremssun 3306 A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
 
Theoremrexun 3307 Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
(∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
 
Theoremralunb 3308 Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
 
Theoremralun 3309 Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)
 
2.1.13.3  The intersection of two classes
 
Theoremelin 3310 Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
 
Theoremelini 3311 Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝐴𝐵    &   𝐴𝐶       𝐴 ∈ (𝐵𝐶)
 
Theoremelind 3312 Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝑋𝐴)    &   (𝜑𝑋𝐵)       (𝜑𝑋 ∈ (𝐴𝐵))
 
Theoremelinel1 3313 Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ (𝐵𝐶) → 𝐴𝐵)
 
Theoremelinel2 3314 Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ (𝐵𝐶) → 𝐴𝐶)
 
Theoremelin2 3315 Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑋 = (𝐵𝐶)       (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
 
Theoremelin1d 3316 Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
(𝜑𝑋 ∈ (𝐴𝐵))       (𝜑𝑋𝐴)
 
Theoremelin2d 3317 Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
(𝜑𝑋 ∈ (𝐴𝐵))       (𝜑𝑋𝐵)
 
Theoremelin3 3318 Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑋 = ((𝐵𝐶) ∩ 𝐷)       (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
 
Theoremincom 3319 Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐵) = (𝐵𝐴)
 
Theoremineqri 3320* Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)       (𝐴𝐵) = 𝐶
 
Theoremineq1 3321 Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremineq2 3322 Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremineq12 3323 Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremineq1i 3324 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremineq2i 3325 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremineq12i 3326 Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremineq1d 3327 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremineq2d 3328 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremineq12d 3329 Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremineqan12d 3330 Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremdfss1 3331 A frequently-used variant of subclass definition df-ss 3134. (Contributed by NM, 10-Jan-2015.)
(𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
 
Theoremdfss5 3332 Another definition of subclasshood. Similar to df-ss 3134, dfss 3135, and dfss1 3331. (Contributed by David Moews, 1-May-2017.)
(𝐴𝐵𝐴 = (𝐵𝐴))
 
Theoremnfin 3333 Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremcsbing 3334 Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
(𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 
Theoremrabbi2dva 3335* Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
((𝜑𝑥𝐴) → (𝑥𝐵𝜓))       (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
 
Theoreminidm 3336 Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐴) = 𝐴
 
Theoreminass 3337 Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
 
Theoremin12 3338 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
(𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
 
Theoremin32 3339 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)
 
Theoremin13 3340 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
(𝐴 ∩ (𝐵𝐶)) = (𝐶 ∩ (𝐵𝐴))
 
Theoremin31 3341 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)
 
Theoreminrot 3342 Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐴) ∩ 𝐵)
 
Theoremin4 3343 Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))
 
Theoreminindi 3344 Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoreminindir 3345 Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremsseqin2 3346 A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
(𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
 
Theoreminss1 3347 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
(𝐴𝐵) ⊆ 𝐴
 
Theoreminss2 3348 The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.)
(𝐴𝐵) ⊆ 𝐵
 
Theoremssin 3349 Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
 
Theoremssini 3350 An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
𝐴𝐵    &   𝐴𝐶       𝐴 ⊆ (𝐵𝐶)
 
Theoremssind 3351 A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐴 ⊆ (𝐵𝐶))
 
Theoremssrin 3352 Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremsslin 3353 Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremssrind 3354 Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremss2in 3355 Intersection of subclasses. (Contributed by NM, 5-May-2000.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
 
Theoremssinss1 3356 Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.)
(𝐴𝐶 → (𝐴𝐵) ⊆ 𝐶)
 
Theoreminss 3357 Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
 
2.1.13.4  Combinations of difference, union, and intersection of two classes
 
Theoremunabs 3358 Absorption law for union. (Contributed by NM, 16-Apr-2006.)
(𝐴 ∪ (𝐴𝐵)) = 𝐴
 
Theoreminabs 3359 Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
(𝐴 ∩ (𝐴𝐵)) = 𝐴
 
Theoremdfss4st 3360* Subclass defined in terms of class difference. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(∀𝑥STAB 𝑥𝐴 → (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴))
 
Theoremssddif 3361 Double complement and subset. Similar to ddifss 3365 but inside a class 𝐵 instead of the universal class V. In classical logic the subset operation on the right hand side could be an equality (that is, 𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴). (Contributed by Jim Kingdon, 24-Jul-2018.)
(𝐴𝐵𝐴 ⊆ (𝐵 ∖ (𝐵𝐴)))
 
Theoremunssdif 3362 Union of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
(𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
 
Theoreminssdif 3363 Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
(𝐴𝐵) ⊆ (𝐴 ∖ (V ∖ 𝐵))
 
Theoremdifin 3364 Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
 
Theoremddifss 3365 Double complement under universal class. In classical logic (or given an additional hypothesis, as in ddifnel 3258), this is equality rather than subset. (Contributed by Jim Kingdon, 24-Jul-2018.)
𝐴 ⊆ (V ∖ (V ∖ 𝐴))
 
Theoremunssin 3366 Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
(𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
 
Theoreminssun 3367 Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
(𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
 
Theoreminssddif 3368 Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
(𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))
 
Theoreminvdif 3369 Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
 
Theoremindif 3370 Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
 
Theoremindif2 3371 Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremindif1 3372 Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremindifcom 3373 Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
(𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
 
Theoremindi 3374 Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremundi 3375 Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremindir 3376 Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremundir 3377 Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremuneqin 3378 Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
 
Theoremdifundi 3379 Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremdifundir 3380 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremdifindiss 3381 Distributive law for class difference. In classical logic, for example, theorem 40 of [Suppes] p. 29, this is an equality instead of subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵𝐶))
 
Theoremdifindir 3382 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremindifdir 3383 Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
 
Theoremdifdif2ss 3384 Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵𝐶))
 
Theoremundm 3385 De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
(V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
 
Theoremindmss 3386 De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.)
((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴𝐵))
 
Theoremdifun1 3387 A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremundif3ss 3388 A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
(𝐴 ∪ (𝐵𝐶)) ⊆ ((𝐴𝐵) ∖ (𝐶𝐴))
 
Theoremdifin2 3389 Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
 
Theoremdif32 3390 Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
 
Theoremdifabs 3391 Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
 
Theoremsymdif1 3392 Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐴𝐵) ∖ (𝐴𝐵))
 
2.1.13.5  Class abstractions with difference, union, and intersection of two classes
 
Theoremsymdifxor 3393* Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.)
((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoremunab 3394 Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
 
Theoreminab 3395 Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
 
Theoremdifab 3396 Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoremnotab 3397 A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
{𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
 
Theoremunrab 3398 Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theoreminrab 3399 Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theoreminrab2 3400* Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >