| Step | Hyp | Ref
| Expression |
| 1 | | prop 7542 |
. . . . . . 7
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 2 | | prnmaxl 7555 |
. . . . . . 7
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐴)) →
∃𝑠 ∈
(1st ‘𝐴)𝑥 <Q 𝑠) |
| 3 | 1, 2 | sylan 283 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ (1st
‘𝐴)) →
∃𝑠 ∈
(1st ‘𝐴)𝑥 <Q 𝑠) |
| 4 | 3 | ad2ant2rl 511 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑠 ∈ (1st
‘𝐴)𝑥 <Q 𝑠) |
| 5 | | ltexnqi 7476 |
. . . . . . 7
⊢ (𝑥 <Q
𝑠 → ∃𝑡 ∈ Q (𝑥 +Q
𝑡) = 𝑠) |
| 6 | 5 | ad2antll 491 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) → ∃𝑡 ∈ Q (𝑥 +Q
𝑡) = 𝑠) |
| 7 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) → 𝐵 ∈ P) |
| 8 | 7 | ad2antrr 488 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) → 𝐵 ∈ P) |
| 9 | | simprl 529 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) → 𝑡 ∈ Q) |
| 10 | | prop 7542 |
. . . . . . . . 9
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
| 11 | | prarloc2 7571 |
. . . . . . . . 9
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑡 ∈ Q) →
∃𝑢 ∈
(1st ‘𝐵)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐵)) |
| 12 | 10, 11 | sylan 283 |
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝑡 ∈ Q)
→ ∃𝑢 ∈
(1st ‘𝐵)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐵)) |
| 13 | 8, 9, 12 | syl2anc 411 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) → ∃𝑢 ∈ (1st ‘𝐵)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐵)) |
| 14 | 8 | adantr 276 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝐵 ∈
P) |
| 15 | | simprl 529 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑢 ∈ (1st
‘𝐵)) |
| 16 | | elprnql 7548 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐵)) → 𝑢 ∈
Q) |
| 17 | 10, 16 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ P ∧
𝑢 ∈ (1st
‘𝐵)) → 𝑢 ∈
Q) |
| 18 | 14, 15, 17 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑢 ∈
Q) |
| 19 | | simpll 527 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) → 𝐴 ∈ P) |
| 20 | 19 | ad3antrrr 492 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝐴 ∈
P) |
| 21 | | simprr 531 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) → 𝑥 ∈ (1st ‘𝐴)) |
| 22 | 21 | ad3antrrr 492 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑥 ∈ (1st
‘𝐴)) |
| 23 | | elprnql 7548 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐴)) → 𝑥 ∈
Q) |
| 24 | 1, 23 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ (1st
‘𝐴)) → 𝑥 ∈
Q) |
| 25 | 20, 22, 24 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑥 ∈
Q) |
| 26 | | nqtri3or 7463 |
. . . . . . . . 9
⊢ ((𝑢 ∈ Q ∧
𝑥 ∈ Q)
→ (𝑢
<Q 𝑥 ∨ 𝑢 = 𝑥 ∨ 𝑥 <Q 𝑢)) |
| 27 | 18, 25, 26 | syl2anc 411 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 <Q
𝑥 ∨ 𝑢 = 𝑥 ∨ 𝑥 <Q 𝑢)) |
| 28 | 18 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → 𝑢 ∈
Q) |
| 29 | | simplrl 535 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑡 ∈
Q) |
| 30 | 29 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → 𝑡 ∈
Q) |
| 31 | | addclnq 7442 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑢
+Q 𝑡) ∈ Q) |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → (𝑢 +Q
𝑡) ∈
Q) |
| 33 | | ltanqg 7467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 34 | 33 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q)) → (𝑓
<Q 𝑔 ↔ (ℎ +Q 𝑓) <Q
(ℎ
+Q 𝑔))) |
| 35 | | addcomnqg 7448 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ (𝑓 ∈ Q ∧
𝑔 ∈ Q))
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
| 37 | 34, 18, 25, 29, 36 | caovord2d 6093 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 <Q
𝑥 ↔ (𝑢 +Q
𝑡)
<Q (𝑥 +Q 𝑡))) |
| 38 | | simplrr 536 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑥 +Q
𝑡) = 𝑠) |
| 39 | | simprl 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) → 𝑠 ∈ (1st ‘𝐴)) |
| 40 | 39 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑠 ∈ (1st
‘𝐴)) |
| 41 | 38, 40 | eqeltrd 2273 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑥 +Q
𝑡) ∈ (1st
‘𝐴)) |
| 42 | | prcdnql 7551 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ (𝑥 +Q
𝑡) ∈ (1st
‘𝐴)) → ((𝑢 +Q
𝑡)
<Q (𝑥 +Q 𝑡) → (𝑢 +Q 𝑡) ∈ (1st
‘𝐴))) |
| 43 | 1, 42 | sylan 283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
(𝑥
+Q 𝑡) ∈ (1st ‘𝐴)) → ((𝑢 +Q 𝑡) <Q
(𝑥
+Q 𝑡) → (𝑢 +Q 𝑡) ∈ (1st
‘𝐴))) |
| 44 | 20, 41, 43 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → ((𝑢 +Q
𝑡)
<Q (𝑥 +Q 𝑡) → (𝑢 +Q 𝑡) ∈ (1st
‘𝐴))) |
| 45 | 37, 44 | sylbid 150 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 <Q
𝑥 → (𝑢 +Q
𝑡) ∈ (1st
‘𝐴))) |
| 46 | | simprr 531 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 +Q
𝑡) ∈ (2nd
‘𝐵)) |
| 47 | 45, 46 | jctild 316 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 <Q
𝑥 → ((𝑢 +Q
𝑡) ∈ (2nd
‘𝐵) ∧ (𝑢 +Q
𝑡) ∈ (1st
‘𝐴)))) |
| 48 | 47 | imp 124 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → ((𝑢 +Q
𝑡) ∈ (2nd
‘𝐵) ∧ (𝑢 +Q
𝑡) ∈ (1st
‘𝐴))) |
| 49 | | eleq1 2259 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑢 +Q 𝑡) → (𝑣 ∈ (2nd ‘𝐵) ↔ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) |
| 50 | | eleq1 2259 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑢 +Q 𝑡) → (𝑣 ∈ (1st ‘𝐴) ↔ (𝑢 +Q 𝑡) ∈ (1st
‘𝐴))) |
| 51 | 49, 50 | anbi12d 473 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑢 +Q 𝑡) → ((𝑣 ∈ (2nd ‘𝐵) ∧ 𝑣 ∈ (1st ‘𝐴)) ↔ ((𝑢 +Q 𝑡) ∈ (2nd
‘𝐵) ∧ (𝑢 +Q
𝑡) ∈ (1st
‘𝐴)))) |
| 52 | 51 | rspcev 2868 |
. . . . . . . . . . . . 13
⊢ (((𝑢 +Q
𝑡) ∈ Q
∧ ((𝑢
+Q 𝑡) ∈ (2nd ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (1st
‘𝐴))) →
∃𝑣 ∈
Q (𝑣 ∈
(2nd ‘𝐵)
∧ 𝑣 ∈
(1st ‘𝐴))) |
| 53 | 32, 48, 52 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → ∃𝑣 ∈ Q (𝑣 ∈ (2nd
‘𝐵) ∧ 𝑣 ∈ (1st
‘𝐴))) |
| 54 | | ltdfpr 7573 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵<P 𝐴 ↔ ∃𝑣 ∈ Q (𝑣 ∈ (2nd
‘𝐵) ∧ 𝑣 ∈ (1st
‘𝐴)))) |
| 55 | 14, 20, 54 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝐵<P
𝐴 ↔ ∃𝑣 ∈ Q (𝑣 ∈ (2nd
‘𝐵) ∧ 𝑣 ∈ (1st
‘𝐴)))) |
| 56 | 55 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → (𝐵<P
𝐴 ↔ ∃𝑣 ∈ Q (𝑣 ∈ (2nd
‘𝐵) ∧ 𝑣 ∈ (1st
‘𝐴)))) |
| 57 | 53, 56 | mpbird 167 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → 𝐵<P 𝐴) |
| 58 | | simplrl 535 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) → ¬ 𝐵<P
𝐴) |
| 59 | 58 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → ¬ 𝐵<P
𝐴) |
| 60 | 57, 59 | pm2.21dd 621 |
. . . . . . . . . 10
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) ∧ 𝑢 <Q
𝑥) → 𝑥 ∈ (1st
‘𝐵)) |
| 61 | 60 | ex 115 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 <Q
𝑥 → 𝑥 ∈ (1st ‘𝐵))) |
| 62 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 ∈ (1st ‘𝐵) ↔ 𝑥 ∈ (1st ‘𝐵))) |
| 63 | 15, 62 | syl5ibcom 155 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑢 = 𝑥 → 𝑥 ∈ (1st ‘𝐵))) |
| 64 | | prcdnql 7551 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐵)) → (𝑥 <Q
𝑢 → 𝑥 ∈ (1st ‘𝐵))) |
| 65 | 10, 64 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ P ∧
𝑢 ∈ (1st
‘𝐵)) → (𝑥 <Q
𝑢 → 𝑥 ∈ (1st ‘𝐵))) |
| 66 | 14, 15, 65 | syl2anc 411 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → (𝑥 <Q
𝑢 → 𝑥 ∈ (1st ‘𝐵))) |
| 67 | 61, 63, 66 | 3jaod 1315 |
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → ((𝑢 <Q
𝑥 ∨ 𝑢 = 𝑥 ∨ 𝑥 <Q 𝑢) → 𝑥 ∈ (1st ‘𝐵))) |
| 68 | 27, 67 | mpd 13 |
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) ∧ (𝑢 ∈ (1st ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐵))) → 𝑥 ∈ (1st
‘𝐵)) |
| 69 | 13, 68 | rexlimddv 2619 |
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) ∧ (𝑡 ∈ Q ∧ (𝑥 +Q
𝑡) = 𝑠)) → 𝑥 ∈ (1st ‘𝐵)) |
| 70 | 6, 69 | rexlimddv 2619 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ (𝑠 ∈ (1st ‘𝐴) ∧ 𝑥 <Q 𝑠)) → 𝑥 ∈ (1st ‘𝐵)) |
| 71 | 4, 70 | rexlimddv 2619 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (¬ 𝐵<P 𝐴 ∧ 𝑥 ∈ (1st ‘𝐴))) → 𝑥 ∈ (1st ‘𝐵)) |
| 72 | 71 | expr 375 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (1st ‘𝐴) → 𝑥 ∈ (1st ‘𝐵))) |
| 73 | 72 | 3impa 1196 |
. 2
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (1st ‘𝐴) → 𝑥 ∈ (1st ‘𝐵))) |
| 74 | 73 | ssrdv 3189 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ ¬ 𝐵<P 𝐴) → (1st
‘𝐴) ⊆
(1st ‘𝐵)) |