![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gcdzeq | GIF version |
Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 11994. (Contributed by AV, 1-Jul-2020.) |
Ref | Expression |
---|---|
gcdzeq | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9248 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
2 | gcddvds 11934 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
3 | 1, 2 | sylan 283 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
4 | 3 | simprd 114 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
5 | breq1 4003 | . . 3 ⊢ ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ 𝐴 ∥ 𝐵)) | |
6 | 4, 5 | syl5ibcom 155 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 → 𝐴 ∥ 𝐵)) |
7 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) |
8 | iddvds 11782 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ 𝐴) |
10 | simpr 110 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
11 | nnne0 8923 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
12 | simpl 109 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0) | |
13 | 12 | necon3ai 2396 | . . . . . . . 8 ⊢ (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
14 | 11, 13 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
16 | dvdslegcd 11935 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) | |
17 | 7, 7, 10, 15, 16 | syl31anc 1241 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) |
18 | 9, 17 | mpand 429 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ (𝐴 gcd 𝐵))) |
19 | 3 | simpld 112 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
20 | gcdcl 11937 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) | |
21 | 1, 20 | sylan 283 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) |
22 | 21 | nn0zd 9349 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) |
23 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ) | |
24 | dvdsle 11820 | . . . . . 6 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) | |
25 | 22, 23, 24 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) |
26 | 19, 25 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴) |
27 | 18, 26 | jctild 316 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
28 | 21 | nn0red 9206 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ) |
29 | nnre 8902 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
30 | 29 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
31 | 28, 30 | letri3d 8050 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
32 | 27, 31 | sylibrd 169 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → (𝐴 gcd 𝐵) = 𝐴)) |
33 | 6, 32 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 class class class wbr 4000 (class class class)co 5868 ℝcr 7788 0cc0 7789 ≤ cle 7970 ℕcn 8895 ℕ0cn0 9152 ℤcz 9229 ∥ cdvds 11765 gcd cgcd 11913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4205 ax-un 4429 ax-setind 4532 ax-iinf 4583 ax-cnex 7880 ax-resscn 7881 ax-1cn 7882 ax-1re 7883 ax-icn 7884 ax-addcl 7885 ax-addrcl 7886 ax-mulcl 7887 ax-mulrcl 7888 ax-addcom 7889 ax-mulcom 7890 ax-addass 7891 ax-mulass 7892 ax-distr 7893 ax-i2m1 7894 ax-0lt1 7895 ax-1rid 7896 ax-0id 7897 ax-rnegex 7898 ax-precex 7899 ax-cnre 7900 ax-pre-ltirr 7901 ax-pre-ltwlin 7902 ax-pre-lttrn 7903 ax-pre-apti 7904 ax-pre-ltadd 7905 ax-pre-mulgt0 7906 ax-pre-mulext 7907 ax-arch 7908 ax-caucvg 7909 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4289 df-po 4292 df-iso 4293 df-iord 4362 df-on 4364 df-ilim 4365 df-suc 4367 df-iom 4586 df-xp 4628 df-rel 4629 df-cnv 4630 df-co 4631 df-dm 4632 df-rn 4633 df-res 4634 df-ima 4635 df-iota 5173 df-fun 5213 df-fn 5214 df-f 5215 df-f1 5216 df-fo 5217 df-f1o 5218 df-fv 5219 df-riota 5824 df-ov 5871 df-oprab 5872 df-mpo 5873 df-1st 6134 df-2nd 6135 df-recs 6299 df-frec 6385 df-sup 6976 df-pnf 7971 df-mnf 7972 df-xr 7973 df-ltxr 7974 df-le 7975 df-sub 8107 df-neg 8108 df-reap 8509 df-ap 8516 df-div 8606 df-inn 8896 df-2 8954 df-3 8955 df-4 8956 df-n0 9153 df-z 9230 df-uz 9505 df-q 9596 df-rp 9628 df-fz 9983 df-fzo 10116 df-fl 10243 df-mod 10296 df-seqfrec 10419 df-exp 10493 df-cj 10822 df-re 10823 df-im 10824 df-rsqrt 10978 df-abs 10979 df-dvds 11766 df-gcd 11914 |
This theorem is referenced by: gcdeq 11994 isevengcd2 12128 |
Copyright terms: Public domain | W3C validator |