Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gcdzeq | GIF version |
Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 11879. (Contributed by AV, 1-Jul-2020.) |
Ref | Expression |
---|---|
gcdzeq | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9165 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
2 | gcddvds 11819 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | |
3 | 1, 2 | sylan 281 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
4 | 3 | simprd 113 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
5 | breq1 3964 | . . 3 ⊢ ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ 𝐴 ∥ 𝐵)) | |
6 | 4, 5 | syl5ibcom 154 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 → 𝐴 ∥ 𝐵)) |
7 | 1 | adantr 274 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) |
8 | iddvds 11673 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 𝐴) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ 𝐴) |
10 | simpr 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
11 | nnne0 8840 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
12 | simpl 108 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0) | |
13 | 12 | necon3ai 2373 | . . . . . . . 8 ⊢ (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
14 | 11, 13 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
15 | 14 | adantr 274 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
16 | dvdslegcd 11820 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) | |
17 | 7, 7, 10, 15, 16 | syl31anc 1220 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐴 ∧ 𝐴 ∥ 𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵))) |
18 | 9, 17 | mpand 426 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ (𝐴 gcd 𝐵))) |
19 | 3 | simpld 111 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
20 | gcdcl 11822 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) | |
21 | 1, 20 | sylan 281 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0) |
22 | 21 | nn0zd 9263 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) |
23 | simpl 108 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ) | |
24 | dvdsle 11709 | . . . . . 6 ⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) | |
25 | 22, 23, 24 | syl2anc 409 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴)) |
26 | 19, 25 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴) |
27 | 18, 26 | jctild 314 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
28 | 21 | nn0red 9123 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ) |
29 | nnre 8819 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
30 | 29 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
31 | 28, 30 | letri3d 7971 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴 ∧ 𝐴 ≤ (𝐴 gcd 𝐵)))) |
32 | 27, 31 | sylibrd 168 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 → (𝐴 gcd 𝐵) = 𝐴)) |
33 | 6, 32 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 ≠ wne 2324 class class class wbr 3961 (class class class)co 5814 ℝcr 7710 0cc0 7711 ≤ cle 7892 ℕcn 8812 ℕ0cn0 9069 ℤcz 9146 ∥ cdvds 11660 gcd cgcd 11802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-sup 6916 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-fl 10147 df-mod 10200 df-seqfrec 10323 df-exp 10397 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-dvds 11661 df-gcd 11803 |
This theorem is referenced by: gcdeq 11879 isevengcd2 12004 |
Copyright terms: Public domain | W3C validator |