ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdzeq GIF version

Theorem gcdzeq 12413
Description: A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 12414. (Contributed by AV, 1-Jul-2020.)
Assertion
Ref Expression
gcdzeq ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))

Proof of Theorem gcdzeq
StepHypRef Expression
1 nnz 9406 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2 gcddvds 12354 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
31, 2sylan 283 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
43simprd 114 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐵)
5 breq1 4053 . . 3 ((𝐴 gcd 𝐵) = 𝐴 → ((𝐴 gcd 𝐵) ∥ 𝐵𝐴𝐵))
64, 5syl5ibcom 155 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
71adantr 276 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
8 iddvds 12185 . . . . . 6 (𝐴 ∈ ℤ → 𝐴𝐴)
97, 8syl 14 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴𝐴)
10 simpr 110 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
11 nnne0 9079 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
12 simpl 109 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐴 = 0)
1312necon3ai 2426 . . . . . . . 8 (𝐴 ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1411, 13syl 14 . . . . . . 7 (𝐴 ∈ ℕ → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1514adantr 276 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
16 dvdslegcd 12355 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝐴𝐴𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵)))
177, 7, 10, 15, 16syl31anc 1253 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐴𝐴𝐵) → 𝐴 ≤ (𝐴 gcd 𝐵)))
189, 17mpand 429 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐴 gcd 𝐵)))
193simpld 112 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∥ 𝐴)
20 gcdcl 12357 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
211, 20sylan 283 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2221nn0zd 9508 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
23 simpl 109 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ)
24 dvdsle 12225 . . . . . 6 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴))
2522, 23, 24syl2anc 411 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → (𝐴 gcd 𝐵) ≤ 𝐴))
2619, 25mpd 13 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ≤ 𝐴)
2718, 26jctild 316 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → ((𝐴 gcd 𝐵) ≤ 𝐴𝐴 ≤ (𝐴 gcd 𝐵))))
2821nn0red 9364 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℝ)
29 nnre 9058 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
3029adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
3128, 30letri3d 8203 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ ((𝐴 gcd 𝐵) ≤ 𝐴𝐴 ≤ (𝐴 gcd 𝐵))))
3227, 31sylibrd 169 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → (𝐴 gcd 𝐵) = 𝐴))
336, 32impbid 129 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4050  (class class class)co 5956  cr 7939  0cc0 7940  cle 8123  cn 9051  0cn0 9310  cz 9387  cdvds 12168   gcd cgcd 12344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-sup 7100  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-fz 10146  df-fzo 10280  df-fl 10430  df-mod 10485  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-dvds 12169  df-gcd 12345
This theorem is referenced by:  gcdeq  12414  isevengcd2  12550
  Copyright terms: Public domain W3C validator