Step | Hyp | Ref
| Expression |
1 | | ssrab 3225 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) |
2 | | simprl 526 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → 𝑦 ⊆ 𝒫 𝐴) |
3 | | sspwuni 3957 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦
⊆ 𝐴) |
4 | 2, 3 | sylib 121 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ⊆ 𝐴) |
5 | | vuniex 4423 |
. . . . . . . . 9
⊢ ∪ 𝑦
∈ V |
6 | 5 | elpw 3572 |
. . . . . . . 8
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
7 | 4, 6 | sylibr 133 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ 𝒫 𝐴) |
8 | | eluni2 3800 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ∪ 𝑦
↔ ∃𝑥 ∈
𝑦 𝑃 ∈ 𝑥) |
9 | | r19.29 2607 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → ∃𝑥 ∈ 𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) |
10 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) |
11 | 10 | impr 377 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 = 𝐴) |
12 | | elssuni 3824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝑦) |
13 | 12 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 ⊆ ∪ 𝑦) |
14 | 11, 13 | eqsstrrd 3184 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝐴 ⊆ ∪ 𝑦) |
15 | 14 | rexlimiva 2582 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) |
16 | 9, 15 | syl 14 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) |
17 | 16 | ex 114 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) |
18 | 17 | ad2antll 488 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) |
19 | 8, 18 | syl5bi 151 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦)) |
20 | 19, 4 | jctild 314 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))) |
21 | | eqss 3162 |
. . . . . . . 8
⊢ (∪ 𝑦 =
𝐴 ↔ (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) |
22 | 20, 21 | syl6ibr 161 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴)) |
23 | | eleq2 2234 |
. . . . . . . . 9
⊢ (𝑥 = ∪
𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦)) |
24 | | eqeq1 2177 |
. . . . . . . . 9
⊢ (𝑥 = ∪
𝑦 → (𝑥 = 𝐴 ↔ ∪ 𝑦 = 𝐴)) |
25 | 23, 24 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴))) |
26 | 25 | elrab 2886 |
. . . . . . 7
⊢ (∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (∪
𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴))) |
27 | 7, 22, 26 | sylanbrc 415 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
28 | 27 | ex 114 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
29 | 1, 28 | syl5bi 151 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
30 | 29 | alrimiv 1867 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
31 | | inss1 3347 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ⊆ 𝑦 |
32 | | simprll 532 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ∈ 𝒫 𝐴) |
33 | 32 | elpwid 3577 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ⊆ 𝐴) |
34 | 31, 33 | sstrid 3158 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
35 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
36 | 35 | inex1 4123 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ∈ V |
37 | 36 | elpw 3572 |
. . . . . . . 8
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
38 | 34, 37 | sylibr 133 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
39 | | elin 3310 |
. . . . . . . 8
⊢ (𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧)) |
40 | | simprlr 533 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) |
41 | | simprrr 535 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)) |
42 | 40, 41 | anim12d 333 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 = 𝐴 ∧ 𝑧 = 𝐴))) |
43 | | ineq12 3323 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝐴)) |
44 | | inidm 3336 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
45 | 43, 44 | eqtrdi 2219 |
. . . . . . . . 9
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = 𝐴) |
46 | 42, 45 | syl6 33 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) |
47 | 39, 46 | syl5bi 151 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) |
48 | 38, 47 | jca 304 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
49 | 48 | ex 114 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)))) |
50 | | eleq2 2234 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) |
51 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) |
52 | 50, 51 | imbi12d 233 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) |
53 | 52 | elrab 2886 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) |
54 | | eleq2 2234 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) |
55 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) |
56 | 54, 55 | imbi12d 233 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) |
57 | 56 | elrab 2886 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) |
58 | 53, 57 | anbi12i 457 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) |
59 | | eleq2 2234 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑦 ∩ 𝑧))) |
60 | | eqeq1 2177 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = 𝐴 ↔ (𝑦 ∩ 𝑧) = 𝐴)) |
61 | 59, 60 | imbi12d 233 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
62 | 61 | elrab 2886 |
. . . . 5
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) |
63 | 49, 58, 62 | 3imtr4g 204 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
64 | 63 | ralrimivv 2551 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
65 | | pwexg 4166 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
66 | 65 | adantr 274 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝒫 𝐴 ∈ V) |
67 | | rabexg 4132 |
. . . . 5
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) |
68 | 66, 67 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) |
69 | | istopg 12791 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) |
70 | 68, 69 | syl 14 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) |
71 | 30, 64, 70 | mpbir2and 939 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top) |
72 | | pwidg 3580 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
73 | 72 | adantr 274 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ 𝒫 𝐴) |
74 | | eqidd 2171 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = 𝐴) |
75 | 74 | a1d 22 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 → 𝐴 = 𝐴)) |
76 | | eleq2 2234 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴)) |
77 | | eqeq1 2177 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) |
78 | 76, 77 | imbi12d 233 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝐴 → 𝐴 = 𝐴))) |
79 | 78 | elrab 2886 |
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝐴 → 𝐴 = 𝐴))) |
80 | 73, 75, 79 | sylanbrc 415 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
81 | | elssuni 3824 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
82 | 80, 81 | syl 14 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
83 | | ssrab2 3232 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 |
84 | | sspwuni 3957 |
. . . . 5
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) |
85 | 83, 84 | mpbi 144 |
. . . 4
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
(𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴 |
86 | 85 | a1i 9 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) |
87 | 82, 86 | eqssd 3164 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) |
88 | | istopon 12805 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ∧ 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) |
89 | 71, 87, 88 | sylanbrc 415 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) |