Step | Hyp | Ref
| Expression |
1 | | ssrab 3234 |
. . . . 5
β’ (π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) |
2 | | simprl 529 |
. . . . . . . . 9
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β π¦ β π« π΄) |
3 | | sspwuni 3972 |
. . . . . . . . 9
β’ (π¦ β π« π΄ β βͺ π¦
β π΄) |
4 | 2, 3 | sylib 122 |
. . . . . . . 8
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β βͺ
π¦ β π΄) |
5 | | vuniex 4439 |
. . . . . . . . 9
β’ βͺ π¦
β V |
6 | 5 | elpw 3582 |
. . . . . . . 8
β’ (βͺ π¦
β π« π΄ β
βͺ π¦ β π΄) |
7 | 4, 6 | sylibr 134 |
. . . . . . 7
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β βͺ
π¦ β π« π΄) |
8 | | eluni2 3814 |
. . . . . . . . . 10
β’ (π β βͺ π¦
β βπ₯ β
π¦ π β π₯) |
9 | | r19.29 2614 |
. . . . . . . . . . . . 13
β’
((βπ₯ β
π¦ (π β π₯ β π₯ = π΄) β§ βπ₯ β π¦ π β π₯) β βπ₯ β π¦ ((π β π₯ β π₯ = π΄) β§ π β π₯)) |
10 | | simpr 110 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β π¦ β§ (π β π₯ β π₯ = π΄)) β (π β π₯ β π₯ = π΄)) |
11 | 10 | impr 379 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β π¦ β§ ((π β π₯ β π₯ = π΄) β§ π β π₯)) β π₯ = π΄) |
12 | | elssuni 3838 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β π¦ β π₯ β βͺ π¦) |
13 | 12 | adantr 276 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β π¦ β§ ((π β π₯ β π₯ = π΄) β§ π β π₯)) β π₯ β βͺ π¦) |
14 | 11, 13 | eqsstrrd 3193 |
. . . . . . . . . . . . . 14
β’ ((π₯ β π¦ β§ ((π β π₯ β π₯ = π΄) β§ π β π₯)) β π΄ β βͺ π¦) |
15 | 14 | rexlimiva 2589 |
. . . . . . . . . . . . 13
β’
(βπ₯ β
π¦ ((π β π₯ β π₯ = π΄) β§ π β π₯) β π΄ β βͺ π¦) |
16 | 9, 15 | syl 14 |
. . . . . . . . . . . 12
β’
((βπ₯ β
π¦ (π β π₯ β π₯ = π΄) β§ βπ₯ β π¦ π β π₯) β π΄ β βͺ π¦) |
17 | 16 | ex 115 |
. . . . . . . . . . 11
β’
(βπ₯ β
π¦ (π β π₯ β π₯ = π΄) β (βπ₯ β π¦ π β π₯ β π΄ β βͺ π¦)) |
18 | 17 | ad2antll 491 |
. . . . . . . . . 10
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β (βπ₯ β π¦ π β π₯ β π΄ β βͺ π¦)) |
19 | 8, 18 | biimtrid 152 |
. . . . . . . . 9
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β (π β βͺ π¦ β π΄ β βͺ π¦)) |
20 | 19, 4 | jctild 316 |
. . . . . . . 8
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β (π β βͺ π¦ β (βͺ π¦
β π΄ β§ π΄ β βͺ π¦))) |
21 | | eqss 3171 |
. . . . . . . 8
β’ (βͺ π¦ =
π΄ β (βͺ π¦
β π΄ β§ π΄ β βͺ π¦)) |
22 | 20, 21 | imbitrrdi 162 |
. . . . . . 7
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β (π β βͺ π¦ β βͺ π¦ =
π΄)) |
23 | | eleq2 2241 |
. . . . . . . . 9
β’ (π₯ = βͺ
π¦ β (π β π₯ β π β βͺ π¦)) |
24 | | eqeq1 2184 |
. . . . . . . . 9
β’ (π₯ = βͺ
π¦ β (π₯ = π΄ β βͺ π¦ = π΄)) |
25 | 23, 24 | imbi12d 234 |
. . . . . . . 8
β’ (π₯ = βͺ
π¦ β ((π β π₯ β π₯ = π΄) β (π β βͺ π¦ β βͺ π¦ =
π΄))) |
26 | 25 | elrab 2894 |
. . . . . . 7
β’ (βͺ π¦
β {π₯ β π«
π΄ β£ (π β π₯ β π₯ = π΄)} β (βͺ
π¦ β π« π΄ β§ (π β βͺ π¦ β βͺ π¦ =
π΄))) |
27 | 7, 22, 26 | sylanbrc 417 |
. . . . . 6
β’ (((π΄ β π β§ π β π΄) β§ (π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄))) β βͺ
π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) |
28 | 27 | ex 115 |
. . . . 5
β’ ((π΄ β π β§ π β π΄) β ((π¦ β π« π΄ β§ βπ₯ β π¦ (π β π₯ β π₯ = π΄)) β βͺ π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)})) |
29 | 1, 28 | biimtrid 152 |
. . . 4
β’ ((π΄ β π β§ π β π΄) β (π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β βͺ π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)})) |
30 | 29 | alrimiv 1874 |
. . 3
β’ ((π΄ β π β§ π β π΄) β βπ¦(π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β βͺ π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)})) |
31 | | inss1 3356 |
. . . . . . . . 9
β’ (π¦ β© π§) β π¦ |
32 | | simprll 537 |
. . . . . . . . . 10
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β π¦ β π« π΄) |
33 | 32 | elpwid 3587 |
. . . . . . . . 9
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β π¦ β π΄) |
34 | 31, 33 | sstrid 3167 |
. . . . . . . 8
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β (π¦ β© π§) β π΄) |
35 | | vex 2741 |
. . . . . . . . . 10
β’ π¦ β V |
36 | 35 | inex1 4138 |
. . . . . . . . 9
β’ (π¦ β© π§) β V |
37 | 36 | elpw 3582 |
. . . . . . . 8
β’ ((π¦ β© π§) β π« π΄ β (π¦ β© π§) β π΄) |
38 | 34, 37 | sylibr 134 |
. . . . . . 7
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β (π¦ β© π§) β π« π΄) |
39 | | elin 3319 |
. . . . . . . 8
β’ (π β (π¦ β© π§) β (π β π¦ β§ π β π§)) |
40 | | simprlr 538 |
. . . . . . . . . 10
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β (π β π¦ β π¦ = π΄)) |
41 | | simprrr 540 |
. . . . . . . . . 10
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β (π β π§ β π§ = π΄)) |
42 | 40, 41 | anim12d 335 |
. . . . . . . . 9
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β ((π β π¦ β§ π β π§) β (π¦ = π΄ β§ π§ = π΄))) |
43 | | ineq12 3332 |
. . . . . . . . . 10
β’ ((π¦ = π΄ β§ π§ = π΄) β (π¦ β© π§) = (π΄ β© π΄)) |
44 | | inidm 3345 |
. . . . . . . . . 10
β’ (π΄ β© π΄) = π΄ |
45 | 43, 44 | eqtrdi 2226 |
. . . . . . . . 9
β’ ((π¦ = π΄ β§ π§ = π΄) β (π¦ β© π§) = π΄) |
46 | 42, 45 | syl6 33 |
. . . . . . . 8
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β ((π β π¦ β§ π β π§) β (π¦ β© π§) = π΄)) |
47 | 39, 46 | biimtrid 152 |
. . . . . . 7
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β (π β (π¦ β© π§) β (π¦ β© π§) = π΄)) |
48 | 38, 47 | jca 306 |
. . . . . 6
β’ (((π΄ β π β§ π β π΄) β§ ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) β ((π¦ β© π§) β π« π΄ β§ (π β (π¦ β© π§) β (π¦ β© π§) = π΄))) |
49 | 48 | ex 115 |
. . . . 5
β’ ((π΄ β π β§ π β π΄) β (((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄))) β ((π¦ β© π§) β π« π΄ β§ (π β (π¦ β© π§) β (π¦ β© π§) = π΄)))) |
50 | | eleq2 2241 |
. . . . . . . 8
β’ (π₯ = π¦ β (π β π₯ β π β π¦)) |
51 | | eqeq1 2184 |
. . . . . . . 8
β’ (π₯ = π¦ β (π₯ = π΄ β π¦ = π΄)) |
52 | 50, 51 | imbi12d 234 |
. . . . . . 7
β’ (π₯ = π¦ β ((π β π₯ β π₯ = π΄) β (π β π¦ β π¦ = π΄))) |
53 | 52 | elrab 2894 |
. . . . . 6
β’ (π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β (π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄))) |
54 | | eleq2 2241 |
. . . . . . . 8
β’ (π₯ = π§ β (π β π₯ β π β π§)) |
55 | | eqeq1 2184 |
. . . . . . . 8
β’ (π₯ = π§ β (π₯ = π΄ β π§ = π΄)) |
56 | 54, 55 | imbi12d 234 |
. . . . . . 7
β’ (π₯ = π§ β ((π β π₯ β π₯ = π΄) β (π β π§ β π§ = π΄))) |
57 | 56 | elrab 2894 |
. . . . . 6
β’ (π§ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β (π§ β π« π΄ β§ (π β π§ β π§ = π΄))) |
58 | 53, 57 | anbi12i 460 |
. . . . 5
β’ ((π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β§ π§ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) β ((π¦ β π« π΄ β§ (π β π¦ β π¦ = π΄)) β§ (π§ β π« π΄ β§ (π β π§ β π§ = π΄)))) |
59 | | eleq2 2241 |
. . . . . . 7
β’ (π₯ = (π¦ β© π§) β (π β π₯ β π β (π¦ β© π§))) |
60 | | eqeq1 2184 |
. . . . . . 7
β’ (π₯ = (π¦ β© π§) β (π₯ = π΄ β (π¦ β© π§) = π΄)) |
61 | 59, 60 | imbi12d 234 |
. . . . . 6
β’ (π₯ = (π¦ β© π§) β ((π β π₯ β π₯ = π΄) β (π β (π¦ β© π§) β (π¦ β© π§) = π΄))) |
62 | 61 | elrab 2894 |
. . . . 5
β’ ((π¦ β© π§) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β ((π¦ β© π§) β π« π΄ β§ (π β (π¦ β© π§) β (π¦ β© π§) = π΄))) |
63 | 49, 58, 62 | 3imtr4g 205 |
. . . 4
β’ ((π΄ β π β§ π β π΄) β ((π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β§ π§ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) β (π¦ β© π§) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)})) |
64 | 63 | ralrimivv 2558 |
. . 3
β’ ((π΄ β π β§ π β π΄) β βπ¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}βπ§ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} (π¦ β© π§) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) |
65 | | pwexg 4181 |
. . . . . 6
β’ (π΄ β π β π« π΄ β V) |
66 | 65 | adantr 276 |
. . . . 5
β’ ((π΄ β π β§ π β π΄) β π« π΄ β V) |
67 | | rabexg 4147 |
. . . . 5
β’
(π« π΄ β
V β {π₯ β
π« π΄ β£ (π β π₯ β π₯ = π΄)} β V) |
68 | 66, 67 | syl 14 |
. . . 4
β’ ((π΄ β π β§ π β π΄) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β V) |
69 | | istopg 13502 |
. . . 4
β’ ({π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β V β ({π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β Top β (βπ¦(π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β βͺ π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) β§ βπ¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}βπ§ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} (π¦ β© π§) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}))) |
70 | 68, 69 | syl 14 |
. . 3
β’ ((π΄ β π β§ π β π΄) β ({π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β Top β (βπ¦(π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β βͺ π¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) β§ βπ¦ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}βπ§ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} (π¦ β© π§) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}))) |
71 | 30, 64, 70 | mpbir2and 944 |
. 2
β’ ((π΄ β π β§ π β π΄) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β Top) |
72 | | pwidg 3590 |
. . . . . 6
β’ (π΄ β π β π΄ β π« π΄) |
73 | 72 | adantr 276 |
. . . . 5
β’ ((π΄ β π β§ π β π΄) β π΄ β π« π΄) |
74 | | eqidd 2178 |
. . . . . 6
β’ ((π΄ β π β§ π β π΄) β π΄ = π΄) |
75 | 74 | a1d 22 |
. . . . 5
β’ ((π΄ β π β§ π β π΄) β (π β π΄ β π΄ = π΄)) |
76 | | eleq2 2241 |
. . . . . . 7
β’ (π₯ = π΄ β (π β π₯ β π β π΄)) |
77 | | eqeq1 2184 |
. . . . . . 7
β’ (π₯ = π΄ β (π₯ = π΄ β π΄ = π΄)) |
78 | 76, 77 | imbi12d 234 |
. . . . . 6
β’ (π₯ = π΄ β ((π β π₯ β π₯ = π΄) β (π β π΄ β π΄ = π΄))) |
79 | 78 | elrab 2894 |
. . . . 5
β’ (π΄ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β (π΄ β π« π΄ β§ (π β π΄ β π΄ = π΄))) |
80 | 73, 75, 79 | sylanbrc 417 |
. . . 4
β’ ((π΄ β π β§ π β π΄) β π΄ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) |
81 | | elssuni 3838 |
. . . 4
β’ (π΄ β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β π΄ β βͺ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) |
82 | 80, 81 | syl 14 |
. . 3
β’ ((π΄ β π β§ π β π΄) β π΄ β βͺ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) |
83 | | ssrab2 3241 |
. . . . 5
β’ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β π« π΄ |
84 | | sspwuni 3972 |
. . . . 5
β’ ({π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β π« π΄ β βͺ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β π΄) |
85 | 83, 84 | mpbi 145 |
. . . 4
β’ βͺ {π₯
β π« π΄ β£
(π β π₯ β π₯ = π΄)} β π΄ |
86 | 85 | a1i 9 |
. . 3
β’ ((π΄ β π β§ π β π΄) β βͺ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β π΄) |
87 | 82, 86 | eqssd 3173 |
. 2
β’ ((π΄ β π β§ π β π΄) β π΄ = βͺ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)}) |
88 | | istopon 13516 |
. 2
β’ ({π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β (TopOnβπ΄) β ({π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β Top β§ π΄ = βͺ {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)})) |
89 | 71, 87, 88 | sylanbrc 417 |
1
β’ ((π΄ β π β§ π β π΄) β {π₯ β π« π΄ β£ (π β π₯ β π₯ = π΄)} β (TopOnβπ΄)) |