| Step | Hyp | Ref
 | Expression | 
| 1 |   | ssrab 3261 | 
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) | 
| 2 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → 𝑦 ⊆ 𝒫 𝐴) | 
| 3 |   | sspwuni 4001 | 
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦
⊆ 𝐴) | 
| 4 | 2, 3 | sylib 122 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ⊆ 𝐴) | 
| 5 |   | vuniex 4473 | 
. . . . . . . . 9
⊢ ∪ 𝑦
∈ V | 
| 6 | 5 | elpw 3611 | 
. . . . . . . 8
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) | 
| 7 | 4, 6 | sylibr 134 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ 𝒫 𝐴) | 
| 8 |   | eluni2 3843 | 
. . . . . . . . . 10
⊢ (𝑃 ∈ ∪ 𝑦
↔ ∃𝑥 ∈
𝑦 𝑃 ∈ 𝑥) | 
| 9 |   | r19.29 2634 | 
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → ∃𝑥 ∈ 𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) | 
| 10 |   | simpr 110 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) | 
| 11 | 10 | impr 379 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 = 𝐴) | 
| 12 |   | elssuni 3867 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝑦) | 
| 13 | 12 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝑥 ⊆ ∪ 𝑦) | 
| 14 | 11, 13 | eqsstrrd 3220 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥)) → 𝐴 ⊆ ∪ 𝑦) | 
| 15 | 14 | rexlimiva 2609 | 
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝑦 ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) | 
| 16 | 9, 15 | syl 14 | 
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ∧ ∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥) → 𝐴 ⊆ ∪ 𝑦) | 
| 17 | 16 | ex 115 | 
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) | 
| 18 | 17 | ad2antll 491 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (∃𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦)) | 
| 19 | 8, 18 | biimtrid 152 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦)) | 
| 20 | 19, 4 | jctild 316 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))) | 
| 21 |   | eqss 3198 | 
. . . . . . . 8
⊢ (∪ 𝑦 =
𝐴 ↔ (∪ 𝑦
⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) | 
| 22 | 20, 21 | imbitrrdi 162 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴)) | 
| 23 |   | eleq2 2260 | 
. . . . . . . . 9
⊢ (𝑥 = ∪
𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦)) | 
| 24 |   | eqeq1 2203 | 
. . . . . . . . 9
⊢ (𝑥 = ∪
𝑦 → (𝑥 = 𝐴 ↔ ∪ 𝑦 = 𝐴)) | 
| 25 | 23, 24 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴))) | 
| 26 | 25 | elrab 2920 | 
. . . . . . 7
⊢ (∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (∪
𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
𝐴))) | 
| 27 | 7, 22, 26 | sylanbrc 417 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴))) → ∪
𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) | 
| 28 | 27 | ex 115 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)) → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) | 
| 29 | 1, 28 | biimtrid 152 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) | 
| 30 | 29 | alrimiv 1888 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) | 
| 31 |   | inss1 3383 | 
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ⊆ 𝑦 | 
| 32 |   | simprll 537 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ∈ 𝒫 𝐴) | 
| 33 | 32 | elpwid 3616 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → 𝑦 ⊆ 𝐴) | 
| 34 | 31, 33 | sstrid 3194 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ⊆ 𝐴) | 
| 35 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 36 | 35 | inex1 4167 | 
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ∈ V | 
| 37 | 36 | elpw 3611 | 
. . . . . . . 8
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) | 
| 38 | 34, 37 | sylibr 134 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) | 
| 39 |   | elin 3346 | 
. . . . . . . 8
⊢ (𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧)) | 
| 40 |   | simprlr 538 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) | 
| 41 |   | simprrr 540 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)) | 
| 42 | 40, 41 | anim12d 335 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 = 𝐴 ∧ 𝑧 = 𝐴))) | 
| 43 |   | ineq12 3359 | 
. . . . . . . . . 10
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝐴)) | 
| 44 |   | inidm 3372 | 
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐴) = 𝐴 | 
| 45 | 43, 44 | eqtrdi 2245 | 
. . . . . . . . 9
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → (𝑦 ∩ 𝑧) = 𝐴) | 
| 46 | 42, 45 | syl6 33 | 
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) | 
| 47 | 39, 46 | biimtrid 152 | 
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)) | 
| 48 | 38, 47 | jca 306 | 
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) | 
| 49 | 48 | ex 115 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) → ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴)))) | 
| 50 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) | 
| 51 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | 
| 52 | 50, 51 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) | 
| 53 | 52 | elrab 2920 | 
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴))) | 
| 54 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) | 
| 55 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) | 
| 56 | 54, 55 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) | 
| 57 | 56 | elrab 2920 | 
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴))) | 
| 58 | 53, 57 | anbi12i 460 | 
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 → 𝑦 = 𝐴)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 → 𝑧 = 𝐴)))) | 
| 59 |   | eleq2 2260 | 
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑦 ∩ 𝑧))) | 
| 60 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = 𝐴 ↔ (𝑦 ∩ 𝑧) = 𝐴)) | 
| 61 | 59, 60 | imbi12d 234 | 
. . . . . 6
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) | 
| 62 | 61 | elrab 2920 | 
. . . . 5
⊢ ((𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = 𝐴))) | 
| 63 | 49, 58, 62 | 3imtr4g 205 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) | 
| 64 | 63 | ralrimivv 2578 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) | 
| 65 |   | pwexg 4213 | 
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | 
| 66 | 65 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝒫 𝐴 ∈ V) | 
| 67 |   | rabexg 4176 | 
. . . . 5
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) | 
| 68 | 66, 67 | syl 14 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V) | 
| 69 |   | istopg 14235 | 
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) | 
| 70 | 68, 69 | syl 14 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → ∪ 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}))) | 
| 71 | 30, 64, 70 | mpbir2and 946 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top) | 
| 72 |   | pwidg 3619 | 
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | 
| 73 | 72 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ 𝒫 𝐴) | 
| 74 |   | eqidd 2197 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = 𝐴) | 
| 75 | 74 | a1d 22 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 → 𝐴 = 𝐴)) | 
| 76 |   | eleq2 2260 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴)) | 
| 77 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | 
| 78 | 76, 77 | imbi12d 234 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑃 ∈ 𝑥 → 𝑥 = 𝐴) ↔ (𝑃 ∈ 𝐴 → 𝐴 = 𝐴))) | 
| 79 | 78 | elrab 2920 | 
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝐴 → 𝐴 = 𝐴))) | 
| 80 | 73, 75, 79 | sylanbrc 417 | 
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) | 
| 81 |   | elssuni 3867 | 
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) | 
| 82 | 80, 81 | syl 14 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) | 
| 83 |   | ssrab2 3268 | 
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 | 
| 84 |   | sspwuni 4001 | 
. . . . 5
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) | 
| 85 | 83, 84 | mpbi 145 | 
. . . 4
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
(𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴 | 
| 86 | 85 | a1i 9 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ⊆ 𝐴) | 
| 87 | 82, 86 | eqssd 3200 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)}) | 
| 88 |   | istopon 14249 | 
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ Top ∧ 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)})) | 
| 89 | 71, 87, 88 | sylanbrc 417 | 
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) |