ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an GIF version

Theorem syl6an 1445
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1 (𝜑𝜓)
syl6an.2 (𝜑 → (𝜒𝜃))
syl6an.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl6an (𝜑 → (𝜒𝜏))

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3 (𝜑 → (𝜒𝜃))
2 syl6an.1 . . 3 (𝜑𝜓)
31, 2jctild 316 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
4 syl6an.3 . 2 ((𝜓𝜃) → 𝜏)
53, 4syl6 33 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mapxpen  6906  prarloclem5  7562  ltsopr  7658  suplocsrlem  7870  nominpos  9223  ublbneg  9681  wrdsymb0  10949  absle  11236  rexanre  11367  rexico  11368  climshftlemg  11448  serf0  11498  dvds1lem  11948  dvds2lem  11949  lmconst  14395  addcncntoplem  14740  bj-indind  15494
  Copyright terms: Public domain W3C validator