![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6an | GIF version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | ⊢ (𝜑 → 𝜓) |
syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | syl6an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jctild 316 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 ∧ 𝜃))) |
4 | syl6an.3 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: mapxpen 6851 prarloclem5 7502 ltsopr 7598 suplocsrlem 7810 nominpos 9159 ublbneg 9616 absle 11101 rexanre 11232 rexico 11233 climshftlemg 11313 serf0 11363 dvds1lem 11812 dvds2lem 11813 lmconst 13877 addcncntoplem 14212 bj-indind 14845 |
Copyright terms: Public domain | W3C validator |