| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl6an | GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | syl6an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jctild 316 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 ∧ 𝜃))) |
| 4 | syl6an.3 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mapxpen 6952 prarloclem5 7620 ltsopr 7716 suplocsrlem 7928 nominpos 9282 ublbneg 9741 wrdsymb0 11033 absle 11444 rexanre 11575 rexico 11576 climshftlemg 11657 serf0 11707 dvds1lem 12157 dvds2lem 12158 lmconst 14732 addcncntoplem 15077 bj-indind 15942 |
| Copyright terms: Public domain | W3C validator |