| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl6an | GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | syl6an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jctild 316 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 ∧ 𝜃))) |
| 4 | syl6an.3 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mapxpen 6910 prarloclem5 7569 ltsopr 7665 suplocsrlem 7877 nominpos 9231 ublbneg 9689 wrdsymb0 10969 absle 11256 rexanre 11387 rexico 11388 climshftlemg 11469 serf0 11519 dvds1lem 11969 dvds2lem 11970 lmconst 14462 addcncntoplem 14807 bj-indind 15588 |
| Copyright terms: Public domain | W3C validator |