ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an GIF version

Theorem syl6an 1422
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1 (𝜑𝜓)
syl6an.2 (𝜑 → (𝜒𝜃))
syl6an.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl6an (𝜑 → (𝜒𝜏))

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3 (𝜑 → (𝜒𝜃))
2 syl6an.1 . . 3 (𝜑𝜓)
31, 2jctild 314 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
4 syl6an.3 . 2 ((𝜓𝜃) → 𝜏)
53, 4syl6 33 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  mapxpen  6814  prarloclem5  7441  ltsopr  7537  suplocsrlem  7749  nominpos  9094  ublbneg  9551  absle  11031  rexanre  11162  rexico  11163  climshftlemg  11243  serf0  11293  dvds1lem  11742  dvds2lem  11743  lmconst  12856  addcncntoplem  13191  bj-indind  13814
  Copyright terms: Public domain W3C validator