| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl6an | GIF version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 | ⊢ (𝜑 → 𝜓) |
| syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | syl6an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jctild 316 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 ∧ 𝜃))) |
| 4 | syl6an.3 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mapxpen 6977 prarloclem5 7655 ltsopr 7751 suplocsrlem 7963 nominpos 9317 ublbneg 9776 wrdsymb0 11070 ccats1pfxeqrex 11213 absle 11566 rexanre 11697 rexico 11698 climshftlemg 11779 serf0 11829 dvds1lem 12279 dvds2lem 12280 lmconst 14855 addcncntoplem 15200 bj-indind 16205 |
| Copyright terms: Public domain | W3C validator |