Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6an | GIF version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | ⊢ (𝜑 → 𝜓) |
syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | syl6an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jctild 314 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 ∧ 𝜃))) |
4 | syl6an.3 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mapxpen 6822 prarloclem5 7449 ltsopr 7545 suplocsrlem 7757 nominpos 9102 ublbneg 9559 absle 11040 rexanre 11171 rexico 11172 climshftlemg 11252 serf0 11302 dvds1lem 11751 dvds2lem 11752 lmconst 12969 addcncntoplem 13304 bj-indind 13927 |
Copyright terms: Public domain | W3C validator |