ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an GIF version

Theorem syl6an 1454
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1 (𝜑𝜓)
syl6an.2 (𝜑 → (𝜒𝜃))
syl6an.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl6an (𝜑 → (𝜒𝜏))

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3 (𝜑 → (𝜒𝜃))
2 syl6an.1 . . 3 (𝜑𝜓)
31, 2jctild 316 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
4 syl6an.3 . 2 ((𝜓𝜃) → 𝜏)
53, 4syl6 33 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mapxpen  6952  prarloclem5  7620  ltsopr  7716  suplocsrlem  7928  nominpos  9282  ublbneg  9741  wrdsymb0  11033  absle  11444  rexanre  11575  rexico  11576  climshftlemg  11657  serf0  11707  dvds1lem  12157  dvds2lem  12158  lmconst  14732  addcncntoplem  15077  bj-indind  15942
  Copyright terms: Public domain W3C validator