ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an GIF version

Theorem syl6an 1476
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1 (𝜑𝜓)
syl6an.2 (𝜑 → (𝜒𝜃))
syl6an.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl6an (𝜑 → (𝜒𝜏))

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3 (𝜑 → (𝜒𝜃))
2 syl6an.1 . . 3 (𝜑𝜓)
31, 2jctild 316 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
4 syl6an.3 . 2 ((𝜓𝜃) → 𝜏)
53, 4syl6 33 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mapxpen  7017  prarloclem5  7695  ltsopr  7791  suplocsrlem  8003  nominpos  9357  ublbneg  9816  wrdsymb0  11112  ccats1pfxeqrex  11255  absle  11608  rexanre  11739  rexico  11740  climshftlemg  11821  serf0  11871  dvds1lem  12321  dvds2lem  12322  lmconst  14898  addcncntoplem  15243  bj-indind  16319
  Copyright terms: Public domain W3C validator