![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6an | GIF version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | ⊢ (𝜑 → 𝜓) |
syl6an.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
syl6an.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl6an | ⊢ (𝜑 → (𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
2 | syl6an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jctild 316 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 ∧ 𝜃))) |
4 | syl6an.3 | . 2 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: mapxpen 6904 prarloclem5 7560 ltsopr 7656 suplocsrlem 7868 nominpos 9220 ublbneg 9678 wrdsymb0 10946 absle 11233 rexanre 11364 rexico 11365 climshftlemg 11445 serf0 11495 dvds1lem 11945 dvds2lem 11946 lmconst 14384 addcncntoplem 14719 bj-indind 15424 |
Copyright terms: Public domain | W3C validator |