| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidmotap | GIF version | ||
| Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| exmidmotap | ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥) | |
| 2 | exmidapne 7402 | . . . . . . . . 9 ⊢ (EXMID → (𝑟 TAp 𝑥 ↔ 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
| 3 | 2 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥 ↔ 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
| 4 | 1, 3 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
| 5 | simprr 531 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥) | |
| 6 | exmidapne 7402 | . . . . . . . . 9 ⊢ (EXMID → (𝑠 TAp 𝑥 ↔ 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
| 7 | 6 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥 ↔ 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
| 8 | 5, 7 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
| 9 | 4, 8 | eqtr4d 2242 | . . . . . 6 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = 𝑠) |
| 10 | 9 | ex 115 | . . . . 5 ⊢ (EXMID → ((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 11 | 10 | alrimivv 1899 | . . . 4 ⊢ (EXMID → ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 12 | tapeq1 7394 | . . . . 5 ⊢ (𝑟 = 𝑠 → (𝑟 TAp 𝑥 ↔ 𝑠 TAp 𝑥)) | |
| 13 | 12 | mo4 2116 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 14 | 11, 13 | sylibr 134 | . . 3 ⊢ (EXMID → ∃*𝑟 𝑟 TAp 𝑥) |
| 15 | 14 | alrimiv 1898 | . 2 ⊢ (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| 16 | 2onn 6625 | . . . 4 ⊢ 2o ∈ ω | |
| 17 | tapeq2 7395 | . . . . . 6 ⊢ (𝑥 = 2o → (𝑟 TAp 𝑥 ↔ 𝑟 TAp 2o)) | |
| 18 | 17 | mobidv 2091 | . . . . 5 ⊢ (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o)) |
| 19 | 18 | spcgv 2864 | . . . 4 ⊢ (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)) |
| 20 | 16, 19 | ax-mp 5 | . . 3 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o) |
| 21 | 2omotap 7401 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) | |
| 22 | 20, 21 | syl 14 | . 2 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → EXMID) |
| 23 | 15, 22 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃*wmo 2056 ∈ wcel 2177 ≠ wne 2377 {copab 4115 EXMIDwem 4249 ωcom 4651 2oc2o 6514 TAp wtap 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-exmid 4250 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fo 5291 df-fv 5293 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-pap 7390 df-tap 7392 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |