![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidmotap | GIF version |
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
Ref | Expression |
---|---|
exmidmotap | ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 529 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥) | |
2 | exmidapne 7261 | . . . . . . . . 9 ⊢ (EXMID → (𝑟 TAp 𝑥 ↔ 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
3 | 2 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥 ↔ 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
4 | 1, 3 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
5 | simprr 531 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥) | |
6 | exmidapne 7261 | . . . . . . . . 9 ⊢ (EXMID → (𝑠 TAp 𝑥 ↔ 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
7 | 6 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥 ↔ 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
8 | 5, 7 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
9 | 4, 8 | eqtr4d 2213 | . . . . . 6 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = 𝑠) |
10 | 9 | ex 115 | . . . . 5 ⊢ (EXMID → ((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
11 | 10 | alrimivv 1875 | . . . 4 ⊢ (EXMID → ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
12 | tapeq1 7253 | . . . . 5 ⊢ (𝑟 = 𝑠 → (𝑟 TAp 𝑥 ↔ 𝑠 TAp 𝑥)) | |
13 | 12 | mo4 2087 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
14 | 11, 13 | sylibr 134 | . . 3 ⊢ (EXMID → ∃*𝑟 𝑟 TAp 𝑥) |
15 | 14 | alrimiv 1874 | . 2 ⊢ (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
16 | 2onn 6524 | . . . 4 ⊢ 2o ∈ ω | |
17 | tapeq2 7254 | . . . . . 6 ⊢ (𝑥 = 2o → (𝑟 TAp 𝑥 ↔ 𝑟 TAp 2o)) | |
18 | 17 | mobidv 2062 | . . . . 5 ⊢ (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o)) |
19 | 18 | spcgv 2826 | . . . 4 ⊢ (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)) |
20 | 16, 19 | ax-mp 5 | . . 3 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o) |
21 | 2omotap 7260 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) | |
22 | 20, 21 | syl 14 | . 2 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → EXMID) |
23 | 15, 22 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 ≠ wne 2347 {copab 4065 EXMIDwem 4196 ωcom 4591 2oc2o 6413 TAp wtap 7250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-exmid 4197 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-1st 6143 df-2nd 6144 df-1o 6419 df-2o 6420 df-pap 7249 df-tap 7251 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |