| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidmotap | GIF version | ||
| Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| exmidmotap | ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥) | |
| 2 | exmidapne 7371 | . . . . . . . . 9 ⊢ (EXMID → (𝑟 TAp 𝑥 ↔ 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
| 3 | 2 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥 ↔ 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
| 4 | 1, 3 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
| 5 | simprr 531 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥) | |
| 6 | exmidapne 7371 | . . . . . . . . 9 ⊢ (EXMID → (𝑠 TAp 𝑥 ↔ 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
| 7 | 6 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥 ↔ 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
| 8 | 5, 7 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
| 9 | 4, 8 | eqtr4d 2240 | . . . . . 6 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = 𝑠) |
| 10 | 9 | ex 115 | . . . . 5 ⊢ (EXMID → ((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 11 | 10 | alrimivv 1897 | . . . 4 ⊢ (EXMID → ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 12 | tapeq1 7363 | . . . . 5 ⊢ (𝑟 = 𝑠 → (𝑟 TAp 𝑥 ↔ 𝑠 TAp 𝑥)) | |
| 13 | 12 | mo4 2114 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 14 | 11, 13 | sylibr 134 | . . 3 ⊢ (EXMID → ∃*𝑟 𝑟 TAp 𝑥) |
| 15 | 14 | alrimiv 1896 | . 2 ⊢ (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| 16 | 2onn 6606 | . . . 4 ⊢ 2o ∈ ω | |
| 17 | tapeq2 7364 | . . . . . 6 ⊢ (𝑥 = 2o → (𝑟 TAp 𝑥 ↔ 𝑟 TAp 2o)) | |
| 18 | 17 | mobidv 2089 | . . . . 5 ⊢ (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o)) |
| 19 | 18 | spcgv 2859 | . . . 4 ⊢ (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)) |
| 20 | 16, 19 | ax-mp 5 | . . 3 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o) |
| 21 | 2omotap 7370 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) | |
| 22 | 20, 21 | syl 14 | . 2 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → EXMID) |
| 23 | 15, 22 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1370 = wceq 1372 ∃*wmo 2054 ∈ wcel 2175 ≠ wne 2375 {copab 4103 EXMIDwem 4237 ωcom 4637 2oc2o 6495 TAp wtap 7360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-exmid 4238 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fo 5276 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-2o 6502 df-pap 7359 df-tap 7361 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |