ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap GIF version

Theorem exmidmotap 7262
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem exmidmotap
Dummy variables 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥)
2 exmidapne 7261 . . . . . . . . 9 (EXMID → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
32adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
41, 3mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
5 simprr 531 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥)
6 exmidapne 7261 . . . . . . . . 9 (EXMID → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
76adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
85, 7mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
94, 8eqtr4d 2213 . . . . . 6 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = 𝑠)
109ex 115 . . . . 5 (EXMID → ((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1110alrimivv 1875 . . . 4 (EXMID → ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
12 tapeq1 7253 . . . . 5 (𝑟 = 𝑠 → (𝑟 TAp 𝑥𝑠 TAp 𝑥))
1312mo4 2087 . . . 4 (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1411, 13sylibr 134 . . 3 (EXMID → ∃*𝑟 𝑟 TAp 𝑥)
1514alrimiv 1874 . 2 (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
16 2onn 6524 . . . 4 2o ∈ ω
17 tapeq2 7254 . . . . . 6 (𝑥 = 2o → (𝑟 TAp 𝑥𝑟 TAp 2o))
1817mobidv 2062 . . . . 5 (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o))
1918spcgv 2826 . . . 4 (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o))
2016, 19ax-mp 5 . . 3 (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)
21 2omotap 7260 . . 3 (∃*𝑟 𝑟 TAp 2oEXMID)
2220, 21syl 14 . 2 (∀𝑥∃*𝑟 𝑟 TAp 𝑥EXMID)
2315, 22impbii 126 1 (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  ∃*wmo 2027  wcel 2148  wne 2347  {copab 4065  EXMIDwem 4196  ωcom 4591  2oc2o 6413   TAp wtap 7250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-exmid 4197  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-2o 6420  df-pap 7249  df-tap 7251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator