ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap GIF version

Theorem exmidmotap 7403
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem exmidmotap
Dummy variables 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥)
2 exmidapne 7402 . . . . . . . . 9 (EXMID → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
32adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
41, 3mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
5 simprr 531 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥)
6 exmidapne 7402 . . . . . . . . 9 (EXMID → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
76adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
85, 7mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
94, 8eqtr4d 2242 . . . . . 6 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = 𝑠)
109ex 115 . . . . 5 (EXMID → ((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1110alrimivv 1899 . . . 4 (EXMID → ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
12 tapeq1 7394 . . . . 5 (𝑟 = 𝑠 → (𝑟 TAp 𝑥𝑠 TAp 𝑥))
1312mo4 2116 . . . 4 (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1411, 13sylibr 134 . . 3 (EXMID → ∃*𝑟 𝑟 TAp 𝑥)
1514alrimiv 1898 . 2 (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
16 2onn 6625 . . . 4 2o ∈ ω
17 tapeq2 7395 . . . . . 6 (𝑥 = 2o → (𝑟 TAp 𝑥𝑟 TAp 2o))
1817mobidv 2091 . . . . 5 (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o))
1918spcgv 2864 . . . 4 (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o))
2016, 19ax-mp 5 . . 3 (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)
21 2omotap 7401 . . 3 (∃*𝑟 𝑟 TAp 2oEXMID)
2220, 21syl 14 . 2 (∀𝑥∃*𝑟 𝑟 TAp 𝑥EXMID)
2315, 22impbii 126 1 (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  ∃*wmo 2056  wcel 2177  wne 2377  {copab 4115  EXMIDwem 4249  ωcom 4651  2oc2o 6514   TAp wtap 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-exmid 4250  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293  df-1st 6244  df-2nd 6245  df-1o 6520  df-2o 6521  df-pap 7390  df-tap 7392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator