| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidmotap | GIF version | ||
| Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| exmidmotap | ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥) | |
| 2 | exmidapne 7442 | . . . . . . . . 9 ⊢ (EXMID → (𝑟 TAp 𝑥 ↔ 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
| 3 | 2 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥 ↔ 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
| 4 | 1, 3 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
| 5 | simprr 531 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥) | |
| 6 | exmidapne 7442 | . . . . . . . . 9 ⊢ (EXMID → (𝑠 TAp 𝑥 ↔ 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) | |
| 7 | 6 | adantr 276 | . . . . . . . 8 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥 ↔ 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)})) |
| 8 | 5, 7 | mpbid 147 | . . . . . . 7 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑠 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ∧ 𝑢 ≠ 𝑣)}) |
| 9 | 4, 8 | eqtr4d 2265 | . . . . . 6 ⊢ ((EXMID ∧ (𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥)) → 𝑟 = 𝑠) |
| 10 | 9 | ex 115 | . . . . 5 ⊢ (EXMID → ((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 11 | 10 | alrimivv 1921 | . . . 4 ⊢ (EXMID → ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 12 | tapeq1 7434 | . . . . 5 ⊢ (𝑟 = 𝑠 → (𝑟 TAp 𝑥 ↔ 𝑠 TAp 𝑥)) | |
| 13 | 12 | mo4 2139 | . . . 4 ⊢ (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟∀𝑠((𝑟 TAp 𝑥 ∧ 𝑠 TAp 𝑥) → 𝑟 = 𝑠)) |
| 14 | 11, 13 | sylibr 134 | . . 3 ⊢ (EXMID → ∃*𝑟 𝑟 TAp 𝑥) |
| 15 | 14 | alrimiv 1920 | . 2 ⊢ (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| 16 | 2onn 6665 | . . . 4 ⊢ 2o ∈ ω | |
| 17 | tapeq2 7435 | . . . . . 6 ⊢ (𝑥 = 2o → (𝑟 TAp 𝑥 ↔ 𝑟 TAp 2o)) | |
| 18 | 17 | mobidv 2113 | . . . . 5 ⊢ (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o)) |
| 19 | 18 | spcgv 2890 | . . . 4 ⊢ (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)) |
| 20 | 16, 19 | ax-mp 5 | . . 3 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o) |
| 21 | 2omotap 7441 | . . 3 ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) | |
| 22 | 20, 21 | syl 14 | . 2 ⊢ (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → EXMID) |
| 23 | 15, 22 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃*wmo 2078 ∈ wcel 2200 ≠ wne 2400 {copab 4143 EXMIDwem 4277 ωcom 4681 2oc2o 6554 TAp wtap 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-exmid 4278 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-pap 7430 df-tap 7432 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |