ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap GIF version

Theorem exmidmotap 7443
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem exmidmotap
Dummy variables 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥)
2 exmidapne 7442 . . . . . . . . 9 (EXMID → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
32adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
41, 3mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
5 simprr 531 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥)
6 exmidapne 7442 . . . . . . . . 9 (EXMID → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
76adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
85, 7mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
94, 8eqtr4d 2265 . . . . . 6 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = 𝑠)
109ex 115 . . . . 5 (EXMID → ((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1110alrimivv 1921 . . . 4 (EXMID → ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
12 tapeq1 7434 . . . . 5 (𝑟 = 𝑠 → (𝑟 TAp 𝑥𝑠 TAp 𝑥))
1312mo4 2139 . . . 4 (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1411, 13sylibr 134 . . 3 (EXMID → ∃*𝑟 𝑟 TAp 𝑥)
1514alrimiv 1920 . 2 (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
16 2onn 6665 . . . 4 2o ∈ ω
17 tapeq2 7435 . . . . . 6 (𝑥 = 2o → (𝑟 TAp 𝑥𝑟 TAp 2o))
1817mobidv 2113 . . . . 5 (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o))
1918spcgv 2890 . . . 4 (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o))
2016, 19ax-mp 5 . . 3 (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)
21 2omotap 7441 . . 3 (∃*𝑟 𝑟 TAp 2oEXMID)
2220, 21syl 14 . 2 (∀𝑥∃*𝑟 𝑟 TAp 𝑥EXMID)
2315, 22impbii 126 1 (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  ∃*wmo 2078  wcel 2200  wne 2400  {copab 4143  EXMIDwem 4277  ωcom 4681  2oc2o 6554   TAp wtap 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-exmid 4278  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-pap 7430  df-tap 7432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator