ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap GIF version

Theorem exmidmotap 7373
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem exmidmotap
Dummy variables 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 TAp 𝑥)
2 exmidapne 7372 . . . . . . . . 9 (EXMID → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
32adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑟 TAp 𝑥𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
41, 3mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
5 simprr 531 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 TAp 𝑥)
6 exmidapne 7372 . . . . . . . . 9 (EXMID → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
76adantr 276 . . . . . . . 8 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → (𝑠 TAp 𝑥𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)}))
85, 7mpbid 147 . . . . . . 7 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑥𝑣𝑥) ∧ 𝑢𝑣)})
94, 8eqtr4d 2241 . . . . . 6 ((EXMID ∧ (𝑟 TAp 𝑥𝑠 TAp 𝑥)) → 𝑟 = 𝑠)
109ex 115 . . . . 5 (EXMID → ((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1110alrimivv 1898 . . . 4 (EXMID → ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
12 tapeq1 7364 . . . . 5 (𝑟 = 𝑠 → (𝑟 TAp 𝑥𝑠 TAp 𝑥))
1312mo4 2115 . . . 4 (∃*𝑟 𝑟 TAp 𝑥 ↔ ∀𝑟𝑠((𝑟 TAp 𝑥𝑠 TAp 𝑥) → 𝑟 = 𝑠))
1411, 13sylibr 134 . . 3 (EXMID → ∃*𝑟 𝑟 TAp 𝑥)
1514alrimiv 1897 . 2 (EXMID → ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
16 2onn 6607 . . . 4 2o ∈ ω
17 tapeq2 7365 . . . . . 6 (𝑥 = 2o → (𝑟 TAp 𝑥𝑟 TAp 2o))
1817mobidv 2090 . . . . 5 (𝑥 = 2o → (∃*𝑟 𝑟 TAp 𝑥 ↔ ∃*𝑟 𝑟 TAp 2o))
1918spcgv 2860 . . . 4 (2o ∈ ω → (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o))
2016, 19ax-mp 5 . . 3 (∀𝑥∃*𝑟 𝑟 TAp 𝑥 → ∃*𝑟 𝑟 TAp 2o)
21 2omotap 7371 . . 3 (∃*𝑟 𝑟 TAp 2oEXMID)
2220, 21syl 14 . 2 (∀𝑥∃*𝑟 𝑟 TAp 𝑥EXMID)
2315, 22impbii 126 1 (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  ∃*wmo 2055  wcel 2176  wne 2376  {copab 4104  EXMIDwem 4238  ωcom 4638  2oc2o 6496   TAp wtap 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-exmid 4239  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-2o 6503  df-pap 7360  df-tap 7362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator