| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp0 | GIF version | ||
| Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 10733) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9426 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℤ) | |
| 2 | 0le0 9167 | . . . . 5 ⊢ 0 ≤ 0 | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 ≤ 0) |
| 4 | 3 | olcd 738 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ∨ 0 ≤ 0)) |
| 5 | exp3val 10730 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 0)) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 6 | 1, 4, 5 | mpd3an23 1354 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 7 | eqid 2209 | . . 3 ⊢ 0 = 0 | |
| 8 | 7 | iftruei 3588 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 9 | 6, 8 | eqtrdi 2258 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 = wceq 1375 ∈ wcel 2180 ifcif 3582 {csn 3646 class class class wbr 4062 × cxp 4694 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 0cc0 7967 1c1 7968 · cmul 7972 < clt 8149 ≤ cle 8150 -cneg 8286 # cap 8696 / cdiv 8787 ℕcn 9078 ℤcz 9414 seqcseq 10636 ↑cexp 10727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-seqfrec 10637 df-exp 10728 |
| This theorem is referenced by: 0exp0e1 10733 expp1 10735 expnegap0 10736 expcllem 10739 mulexp 10767 expadd 10770 expmul 10773 leexp1a 10783 exple1 10784 bernneq 10849 modqexp 10855 exp0d 10856 cjexp 11370 resqrexlemcalc3 11493 absexp 11556 binom 11961 ege2le3 12148 eft0val 12170 demoivreALT 12251 bits0 12425 0bits 12436 bitsinv1 12439 numexp0 12911 cnfldexp 14506 expcn 15208 expcncf 15248 dvexp 15350 dvexp2 15351 plyconst 15384 lgsquad2lem2 15726 |
| Copyright terms: Public domain | W3C validator |