| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp0 | GIF version | ||
| Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 10774) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9466 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℤ) | |
| 2 | 0le0 9207 | . . . . 5 ⊢ 0 ≤ 0 | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 ≤ 0) |
| 4 | 3 | olcd 739 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ∨ 0 ≤ 0)) |
| 5 | exp3val 10771 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 0)) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 6 | 1, 4, 5 | mpd3an23 1373 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 7 | eqid 2229 | . . 3 ⊢ 0 = 0 | |
| 8 | 7 | iftruei 3608 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 9 | 6, 8 | eqtrdi 2278 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ifcif 3602 {csn 3666 class class class wbr 4083 × cxp 4717 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 · cmul 8012 < clt 8189 ≤ cle 8190 -cneg 8326 # cap 8736 / cdiv 8827 ℕcn 9118 ℤcz 9454 seqcseq 10677 ↑cexp 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-seqfrec 10678 df-exp 10769 |
| This theorem is referenced by: 0exp0e1 10774 expp1 10776 expnegap0 10777 expcllem 10780 mulexp 10808 expadd 10811 expmul 10814 leexp1a 10824 exple1 10825 bernneq 10890 modqexp 10896 exp0d 10897 cjexp 11412 resqrexlemcalc3 11535 absexp 11598 binom 12003 ege2le3 12190 eft0val 12212 demoivreALT 12293 bits0 12467 0bits 12478 bitsinv1 12481 numexp0 12953 cnfldexp 14549 expcn 15251 expcncf 15291 dvexp 15393 dvexp2 15394 plyconst 15427 lgsquad2lem2 15769 |
| Copyright terms: Public domain | W3C validator |