| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp0 | GIF version | ||
| Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 10638) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| exp0 | ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9340 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℤ) | |
| 2 | 0le0 9081 | . . . . 5 ⊢ 0 ≤ 0 | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 ≤ 0) |
| 4 | 3 | olcd 735 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ∨ 0 ≤ 0)) |
| 5 | exp3val 10635 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 0)) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) | |
| 6 | 1, 4, 5 | mpd3an23 1350 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0))))) |
| 7 | eqid 2196 | . . 3 ⊢ 0 = 0 | |
| 8 | 7 | iftruei 3568 | . 2 ⊢ if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}))‘0), (1 / (seq1( · , (ℕ × {𝐴}))‘-0)))) = 1 |
| 9 | 6, 8 | eqtrdi 2245 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ifcif 3562 {csn 3623 class class class wbr 4034 × cxp 4662 ‘cfv 5259 (class class class)co 5923 ℂcc 7879 0cc0 7881 1c1 7882 · cmul 7886 < clt 8063 ≤ cle 8064 -cneg 8200 # cap 8610 / cdiv 8701 ℕcn 8992 ℤcz 9328 seqcseq 10541 ↑cexp 10632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-n0 9252 df-z 9329 df-uz 9604 df-seqfrec 10542 df-exp 10633 |
| This theorem is referenced by: 0exp0e1 10638 expp1 10640 expnegap0 10641 expcllem 10644 mulexp 10672 expadd 10675 expmul 10678 leexp1a 10688 exple1 10689 bernneq 10754 modqexp 10760 exp0d 10761 cjexp 11060 resqrexlemcalc3 11183 absexp 11246 binom 11651 ege2le3 11838 eft0val 11860 demoivreALT 11941 bits0 12115 0bits 12126 bitsinv1 12129 numexp0 12601 cnfldexp 14143 expcn 14815 expcncf 14855 dvexp 14957 dvexp2 14958 plyconst 14991 lgsquad2lem2 15333 |
| Copyright terms: Public domain | W3C validator |