ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmul2 GIF version

Theorem qusmul2 14085
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul2.h 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qusmul2.v 𝐵 = (Base‘𝑅)
qusmul2.p · = (.r𝑅)
qusmul2.a × = (.r𝑄)
qusmul2.1 (𝜑𝑅 ∈ Ring)
qusmul2.2 (𝜑𝐼 ∈ (2Ideal‘𝑅))
qusmul2.3 (𝜑𝑋𝐵)
qusmul2.4 (𝜑𝑌𝐵)
Assertion
Ref Expression
qusmul2 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))

Proof of Theorem qusmul2
Dummy variables 𝑡 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul2.3 . 2 (𝜑𝑋𝐵)
2 qusmul2.4 . 2 (𝜑𝑌𝐵)
3 qusmul2.h . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
43a1i 9 . . 3 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
5 qusmul2.v . . . 4 𝐵 = (Base‘𝑅)
65a1i 9 . . 3 (𝜑𝐵 = (Base‘𝑅))
7 qusmul2.1 . . . . 5 (𝜑𝑅 ∈ Ring)
8 qusmul2.2 . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
982idllidld 14062 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
10 eqid 2196 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1110lidlsubg 14042 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
127, 9, 11syl2anc 411 . . . 4 (𝜑𝐼 ∈ (SubGrp‘𝑅))
13 eqid 2196 . . . . 5 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
145, 13eqger 13354 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
1512, 14syl 14 . . 3 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
16 eqid 2196 . . . . 5 (2Ideal‘𝑅) = (2Ideal‘𝑅)
17 qusmul2.p . . . . 5 · = (.r𝑅)
185, 13, 16, 172idlcpbl 14080 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
197, 8, 18syl2anc 411 . . 3 (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
205, 17ringcl 13569 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝𝐵𝑞𝐵) → (𝑝 · 𝑞) ∈ 𝐵)
21203expb 1206 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
227, 21sylan 283 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
2322caovclg 6076 . . 3 ((𝜑 ∧ (𝑦𝐵𝑡𝐵)) → (𝑦 · 𝑡) ∈ 𝐵)
24 qusmul2.a . . 3 × = (.r𝑄)
254, 6, 15, 7, 19, 23, 17, 24qusmulval 12980 . 2 ((𝜑𝑋𝐵𝑌𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
261, 2, 25mpd3an23 1350 1 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922   Er wer 6589  [cec 6590  Basecbs 12678  .rcmulr 12756   /s cqus 12943  SubGrpcsubg 13297   ~QG cqg 13299  Ringcrg 13552  LIdealclidl 14023  2Idealc2idl 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-eqg 13302  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-ur 13516  df-ring 13554  df-oppr 13624  df-subrg 13775  df-lmod 13845  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025  df-2idl 14056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator