| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qusmul2 | GIF version | ||
| Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| qusmul2.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | 
| qusmul2.v | ⊢ 𝐵 = (Base‘𝑅) | 
| qusmul2.p | ⊢ · = (.r‘𝑅) | 
| qusmul2.a | ⊢ × = (.r‘𝑄) | 
| qusmul2.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| qusmul2.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | 
| qusmul2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| qusmul2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| qusmul2 | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusmul2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | qusmul2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | qusmul2.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) | 
| 5 | qusmul2.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| 7 | qusmul2.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | qusmul2.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 9 | 8 | 2idllidld 14062 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | 
| 10 | eqid 2196 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 11 | 10 | lidlsubg 14042 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) | 
| 12 | 7, 9, 11 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) | 
| 13 | eqid 2196 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 14 | 5, 13 | eqger 13354 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) | 
| 15 | 12, 14 | syl 14 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) | 
| 16 | eqid 2196 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 17 | qusmul2.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 18 | 5, 13, 16, 17 | 2idlcpbl 14080 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) | 
| 19 | 7, 8, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) | 
| 20 | 5, 17 | ringcl 13569 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) | 
| 21 | 20 | 3expb 1206 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) | 
| 22 | 7, 21 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) | 
| 23 | 22 | caovclg 6076 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) | 
| 24 | qusmul2.a | . . 3 ⊢ × = (.r‘𝑄) | |
| 25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 12980 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | 
| 26 | 1, 2, 25 | mpd3an23 1350 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 Er wer 6589 [cec 6590 Basecbs 12678 .rcmulr 12756 /s cqus 12943 SubGrpcsubg 13297 ~QG cqg 13299 Ringcrg 13552 LIdealclidl 14023 2Idealc2idl 14055 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-er 6592 df-ec 6594 df-qs 6598 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-0g 12929 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-subg 13300 df-eqg 13302 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-ur 13516 df-ring 13554 df-oppr 13624 df-subrg 13775 df-lmod 13845 df-lssm 13909 df-sra 13991 df-rgmod 13992 df-lidl 14025 df-2idl 14056 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |