ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmul2 GIF version

Theorem qusmul2 14361
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul2.h 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qusmul2.v 𝐵 = (Base‘𝑅)
qusmul2.p · = (.r𝑅)
qusmul2.a × = (.r𝑄)
qusmul2.1 (𝜑𝑅 ∈ Ring)
qusmul2.2 (𝜑𝐼 ∈ (2Ideal‘𝑅))
qusmul2.3 (𝜑𝑋𝐵)
qusmul2.4 (𝜑𝑌𝐵)
Assertion
Ref Expression
qusmul2 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))

Proof of Theorem qusmul2
Dummy variables 𝑡 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul2.3 . 2 (𝜑𝑋𝐵)
2 qusmul2.4 . 2 (𝜑𝑌𝐵)
3 qusmul2.h . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
43a1i 9 . . 3 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
5 qusmul2.v . . . 4 𝐵 = (Base‘𝑅)
65a1i 9 . . 3 (𝜑𝐵 = (Base‘𝑅))
7 qusmul2.1 . . . . 5 (𝜑𝑅 ∈ Ring)
8 qusmul2.2 . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
982idllidld 14338 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
10 eqid 2206 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1110lidlsubg 14318 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
127, 9, 11syl2anc 411 . . . 4 (𝜑𝐼 ∈ (SubGrp‘𝑅))
13 eqid 2206 . . . . 5 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
145, 13eqger 13630 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
1512, 14syl 14 . . 3 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
16 eqid 2206 . . . . 5 (2Ideal‘𝑅) = (2Ideal‘𝑅)
17 qusmul2.p . . . . 5 · = (.r𝑅)
185, 13, 16, 172idlcpbl 14356 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
197, 8, 18syl2anc 411 . . 3 (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
205, 17ringcl 13845 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝𝐵𝑞𝐵) → (𝑝 · 𝑞) ∈ 𝐵)
21203expb 1207 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
227, 21sylan 283 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
2322caovclg 6111 . . 3 ((𝜑 ∧ (𝑦𝐵𝑡𝐵)) → (𝑦 · 𝑡) ∈ 𝐵)
24 qusmul2.a . . 3 × = (.r𝑄)
254, 6, 15, 7, 19, 23, 17, 24qusmulval 13239 . 2 ((𝜑𝑋𝐵𝑌𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
261, 2, 25mpd3an23 1352 1 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177   class class class wbr 4050  cfv 5279  (class class class)co 5956   Er wer 6629  [cec 6630  Basecbs 12902  .rcmulr 12980   /s cqus 13202  SubGrpcsubg 13573   ~QG cqg 13575  Ringcrg 13828  LIdealclidl 14299  2Idealc2idl 14331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-tp 3645  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-tpos 6343  df-er 6632  df-ec 6634  df-qs 6638  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-7 9115  df-8 9116  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-iress 12910  df-plusg 12992  df-mulr 12993  df-sca 12995  df-vsca 12996  df-ip 12997  df-0g 13160  df-iimas 13204  df-qus 13205  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-sbg 13407  df-subg 13576  df-eqg 13578  df-cmn 13692  df-abl 13693  df-mgp 13753  df-rng 13765  df-ur 13792  df-ring 13830  df-oppr 13900  df-subrg 14051  df-lmod 14121  df-lssm 14185  df-sra 14267  df-rgmod 14268  df-lidl 14301  df-2idl 14332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator