![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusmul2 | GIF version |
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
Ref | Expression |
---|---|
qusmul2.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
qusmul2.v | ⊢ 𝐵 = (Base‘𝑅) |
qusmul2.p | ⊢ · = (.r‘𝑅) |
qusmul2.a | ⊢ × = (.r‘𝑄) |
qusmul2.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
qusmul2.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
qusmul2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
qusmul2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
qusmul2 | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmul2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | qusmul2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | qusmul2.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
5 | qusmul2.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
7 | qusmul2.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | qusmul2.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
9 | 8 | 2idllidld 14002 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
10 | eqid 2193 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
11 | 10 | lidlsubg 13982 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
12 | 7, 9, 11 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
13 | eqid 2193 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
14 | 5, 13 | eqger 13294 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) |
15 | 12, 14 | syl 14 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) |
16 | eqid 2193 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
17 | qusmul2.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
18 | 5, 13, 16, 17 | 2idlcpbl 14020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
19 | 7, 8, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
20 | 5, 17 | ringcl 13509 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) |
21 | 20 | 3expb 1206 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
22 | 7, 21 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
23 | 22 | caovclg 6071 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) |
24 | qusmul2.a | . . 3 ⊢ × = (.r‘𝑄) | |
25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 12920 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
26 | 1, 2, 25 | mpd3an23 1350 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 Er wer 6584 [cec 6585 Basecbs 12618 .rcmulr 12696 /s cqus 12883 SubGrpcsubg 13237 ~QG cqg 13239 Ringcrg 13492 LIdealclidl 13963 2Idealc2idl 13995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-tpos 6298 df-er 6587 df-ec 6589 df-qs 6593 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-ip 12713 df-0g 12869 df-iimas 12885 df-qus 12886 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-sbg 13077 df-subg 13240 df-eqg 13242 df-cmn 13356 df-abl 13357 df-mgp 13417 df-rng 13429 df-ur 13456 df-ring 13494 df-oppr 13564 df-subrg 13715 df-lmod 13785 df-lssm 13849 df-sra 13931 df-rgmod 13932 df-lidl 13965 df-2idl 13996 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |