ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmul2 GIF version

Theorem qusmul2 13868
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul2.h 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qusmul2.v 𝐵 = (Base‘𝑅)
qusmul2.p · = (.r𝑅)
qusmul2.a × = (.r𝑄)
qusmul2.1 (𝜑𝑅 ∈ Ring)
qusmul2.2 (𝜑𝐼 ∈ (2Ideal‘𝑅))
qusmul2.3 (𝜑𝑋𝐵)
qusmul2.4 (𝜑𝑌𝐵)
Assertion
Ref Expression
qusmul2 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))

Proof of Theorem qusmul2
Dummy variables 𝑡 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul2.3 . 2 (𝜑𝑋𝐵)
2 qusmul2.4 . 2 (𝜑𝑌𝐵)
3 qusmul2.h . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
43a1i 9 . . 3 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
5 qusmul2.v . . . 4 𝐵 = (Base‘𝑅)
65a1i 9 . . 3 (𝜑𝐵 = (Base‘𝑅))
7 qusmul2.1 . . . . 5 (𝜑𝑅 ∈ Ring)
8 qusmul2.2 . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
982idllidld 13846 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
10 eqid 2189 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1110lidlsubg 13827 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
127, 9, 11syl2anc 411 . . . 4 (𝜑𝐼 ∈ (SubGrp‘𝑅))
13 eqid 2189 . . . . 5 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
145, 13eqger 13188 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
1512, 14syl 14 . . 3 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
16 eqid 2189 . . . . 5 (2Ideal‘𝑅) = (2Ideal‘𝑅)
17 qusmul2.p . . . . 5 · = (.r𝑅)
185, 13, 16, 172idlcpbl 13864 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
197, 8, 18syl2anc 411 . . 3 (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
205, 17ringcl 13392 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝𝐵𝑞𝐵) → (𝑝 · 𝑞) ∈ 𝐵)
21203expb 1206 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
227, 21sylan 283 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
2322caovclg 6053 . . 3 ((𝜑 ∧ (𝑦𝐵𝑡𝐵)) → (𝑦 · 𝑡) ∈ 𝐵)
24 qusmul2.a . . 3 × = (.r𝑄)
254, 6, 15, 7, 19, 23, 17, 24qusmulval 12824 . 2 ((𝜑𝑋𝐵𝑌𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
261, 2, 25mpd3an23 1350 1 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4021  cfv 5238  (class class class)co 5900   Er wer 6560  [cec 6561  Basecbs 12523  .rcmulr 12601   /s cqus 12788  SubGrpcsubg 13131   ~QG cqg 13133  Ringcrg 13375  LIdealclidl 13808  2Idealc2idl 13840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-tp 3618  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-tpos 6274  df-er 6563  df-ec 6565  df-qs 6569  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-7 9018  df-8 9019  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-mulr 12614  df-sca 12616  df-vsca 12617  df-ip 12618  df-0g 12774  df-iimas 12790  df-qus 12791  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-sbg 12973  df-subg 13134  df-eqg 13136  df-cmn 13250  df-abl 13251  df-mgp 13300  df-rng 13312  df-ur 13339  df-ring 13377  df-oppr 13443  df-subrg 13591  df-lmod 13630  df-lssm 13694  df-sra 13776  df-rgmod 13777  df-lidl 13810  df-2idl 13841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator