| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusmul2 | GIF version | ||
| Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| qusmul2.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| qusmul2.v | ⊢ 𝐵 = (Base‘𝑅) |
| qusmul2.p | ⊢ · = (.r‘𝑅) |
| qusmul2.a | ⊢ × = (.r‘𝑄) |
| qusmul2.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| qusmul2.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| qusmul2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| qusmul2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusmul2 | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmul2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | qusmul2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | qusmul2.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 5 | qusmul2.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 7 | qusmul2.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | qusmul2.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 9 | 8 | 2idllidld 14338 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 10 | eqid 2206 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 11 | 10 | lidlsubg 14318 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 12 | 7, 9, 11 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 13 | eqid 2206 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 14 | 5, 13 | eqger 13630 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) |
| 15 | 12, 14 | syl 14 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) |
| 16 | eqid 2206 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 17 | qusmul2.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 18 | 5, 13, 16, 17 | 2idlcpbl 14356 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
| 19 | 7, 8, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
| 20 | 5, 17 | ringcl 13845 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) |
| 21 | 20 | 3expb 1207 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
| 22 | 7, 21 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
| 23 | 22 | caovclg 6111 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) |
| 24 | qusmul2.a | . . 3 ⊢ × = (.r‘𝑄) | |
| 25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 13239 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| 26 | 1, 2, 25 | mpd3an23 1352 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 Er wer 6629 [cec 6630 Basecbs 12902 .rcmulr 12980 /s cqus 13202 SubGrpcsubg 13573 ~QG cqg 13575 Ringcrg 13828 LIdealclidl 14299 2Idealc2idl 14331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-tp 3645 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-tpos 6343 df-er 6632 df-ec 6634 df-qs 6638 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-iress 12910 df-plusg 12992 df-mulr 12993 df-sca 12995 df-vsca 12996 df-ip 12997 df-0g 13160 df-iimas 13204 df-qus 13205 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-minusg 13406 df-sbg 13407 df-subg 13576 df-eqg 13578 df-cmn 13692 df-abl 13693 df-mgp 13753 df-rng 13765 df-ur 13792 df-ring 13830 df-oppr 13900 df-subrg 14051 df-lmod 14121 df-lssm 14185 df-sra 14267 df-rgmod 14268 df-lidl 14301 df-2idl 14332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |