ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccl GIF version

Theorem bccl 10956
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)

Proof of Theorem bccl
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5981 . . . . 5 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
21eleq1d 2278 . . . 4 (𝑚 = 0 → ((𝑚C𝑘) ∈ ℕ0 ↔ (0C𝑘) ∈ ℕ0))
32ralbidv 2510 . . 3 (𝑚 = 0 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0))
4 oveq1 5981 . . . . 5 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
54eleq1d 2278 . . . 4 (𝑚 = 𝑛 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
65ralbidv 2510 . . 3 (𝑚 = 𝑛 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0))
7 oveq1 5981 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
87eleq1d 2278 . . . 4 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) ∈ ℕ0 ↔ ((𝑛 + 1)C𝑘) ∈ ℕ0))
98ralbidv 2510 . . 3 (𝑚 = (𝑛 + 1) → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
10 oveq1 5981 . . . . 5 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
1110eleq1d 2278 . . . 4 (𝑚 = 𝑁 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑁C𝑘) ∈ ℕ0))
1211ralbidv 2510 . . 3 (𝑚 = 𝑁 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0))
13 elfz1eq 10199 . . . . . . 7 (𝑘 ∈ (0...0) → 𝑘 = 0)
1413adantl 277 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
15 oveq2 5982 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
16 0nn0 9352 . . . . . . . . 9 0 ∈ ℕ0
17 bcn0 10944 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
1816, 17ax-mp 5 . . . . . . . 8 (0C0) = 1
19 1nn0 9353 . . . . . . . 8 1 ∈ ℕ0
2018, 19eqeltri 2282 . . . . . . 7 (0C0) ∈ ℕ0
2115, 20eqeltrdi 2300 . . . . . 6 (𝑘 = 0 → (0C𝑘) ∈ ℕ0)
2214, 21syl 14 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
23 bcval3 10940 . . . . . . 7 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2416, 23mp3an1 1339 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2524, 16eqeltrdi 2300 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
26 0zd 9426 . . . . . 6 (𝑘 ∈ ℤ → 0 ∈ ℤ)
27 fzdcel 10204 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑘 ∈ (0...0))
28 exmiddc 840 . . . . . . 7 (DECID 𝑘 ∈ (0...0) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0)))
2927, 28syl 14 . . . . . 6 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0)))
3026, 26, 29mpd3an23 1354 . . . . 5 (𝑘 ∈ ℤ → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0)))
3122, 25, 30mpjaodan 802 . . . 4 (𝑘 ∈ ℤ → (0C𝑘) ∈ ℕ0)
3231rgen 2563 . . 3 𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0
33 oveq2 5982 . . . . . 6 (𝑘 = 𝑚 → (𝑛C𝑘) = (𝑛C𝑚))
3433eleq1d 2278 . . . . 5 (𝑘 = 𝑚 → ((𝑛C𝑘) ∈ ℕ0 ↔ (𝑛C𝑚) ∈ ℕ0))
3534cbvralv 2745 . . . 4 (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 ↔ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0)
36 bcpasc 10955 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
3736adantlr 477 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
38 oveq2 5982 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
3938eleq1d 2278 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
4039rspccva 2886 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
41 peano2zm 9452 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
42 oveq2 5982 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (𝑛C𝑚) = (𝑛C(𝑘 − 1)))
4342eleq1d 2278 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C(𝑘 − 1)) ∈ ℕ0))
4443rspccva 2886 . . . . . . . . . 10 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4541, 44sylan2 286 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4640, 45nn0addcld 9394 . . . . . . . 8 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4746adantll 476 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4837, 47eqeltrrd 2287 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛 + 1)C𝑘) ∈ ℕ0)
4948ralrimiva 2583 . . . . 5 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0)
5049ex 115 . . . 4 (𝑛 ∈ ℕ0 → (∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
5135, 50biimtrid 152 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
523, 6, 9, 12, 32, 51nn0ind 9529 . 2 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0)
53 oveq2 5982 . . . 4 (𝑘 = 𝐾 → (𝑁C𝑘) = (𝑁C𝐾))
5453eleq1d 2278 . . 3 (𝑘 = 𝐾 → ((𝑁C𝑘) ∈ ℕ0 ↔ (𝑁C𝐾) ∈ ℕ0))
5554rspccva 2886 . 2 ((∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
5652, 55sylan 283 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wcel 2180  wral 2488  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970  cmin 8285  0cn0 9337  cz 9414  ...cfz 10172  Ccbc 10936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-seqfrec 10637  df-fac 10915  df-bc 10937
This theorem is referenced by:  bccl2  10957  bcn2m1  10958  bcn2p1  10959  binomlem  11960  bcxmas  11966
  Copyright terms: Public domain W3C validator