ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccl GIF version

Theorem bccl 10761
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)

Proof of Theorem bccl
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5895 . . . . 5 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
21eleq1d 2256 . . . 4 (𝑚 = 0 → ((𝑚C𝑘) ∈ ℕ0 ↔ (0C𝑘) ∈ ℕ0))
32ralbidv 2487 . . 3 (𝑚 = 0 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0))
4 oveq1 5895 . . . . 5 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
54eleq1d 2256 . . . 4 (𝑚 = 𝑛 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
65ralbidv 2487 . . 3 (𝑚 = 𝑛 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0))
7 oveq1 5895 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
87eleq1d 2256 . . . 4 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) ∈ ℕ0 ↔ ((𝑛 + 1)C𝑘) ∈ ℕ0))
98ralbidv 2487 . . 3 (𝑚 = (𝑛 + 1) → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
10 oveq1 5895 . . . . 5 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
1110eleq1d 2256 . . . 4 (𝑚 = 𝑁 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑁C𝑘) ∈ ℕ0))
1211ralbidv 2487 . . 3 (𝑚 = 𝑁 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0))
13 elfz1eq 10049 . . . . . . 7 (𝑘 ∈ (0...0) → 𝑘 = 0)
1413adantl 277 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
15 oveq2 5896 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
16 0nn0 9205 . . . . . . . . 9 0 ∈ ℕ0
17 bcn0 10749 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
1816, 17ax-mp 5 . . . . . . . 8 (0C0) = 1
19 1nn0 9206 . . . . . . . 8 1 ∈ ℕ0
2018, 19eqeltri 2260 . . . . . . 7 (0C0) ∈ ℕ0
2115, 20eqeltrdi 2278 . . . . . 6 (𝑘 = 0 → (0C𝑘) ∈ ℕ0)
2214, 21syl 14 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
23 bcval3 10745 . . . . . . 7 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2416, 23mp3an1 1334 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2524, 16eqeltrdi 2278 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
26 0zd 9279 . . . . . 6 (𝑘 ∈ ℤ → 0 ∈ ℤ)
27 fzdcel 10054 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑘 ∈ (0...0))
28 exmiddc 837 . . . . . . 7 (DECID 𝑘 ∈ (0...0) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0)))
2927, 28syl 14 . . . . . 6 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0)))
3026, 26, 29mpd3an23 1349 . . . . 5 (𝑘 ∈ ℤ → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0)))
3122, 25, 30mpjaodan 799 . . . 4 (𝑘 ∈ ℤ → (0C𝑘) ∈ ℕ0)
3231rgen 2540 . . 3 𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0
33 oveq2 5896 . . . . . 6 (𝑘 = 𝑚 → (𝑛C𝑘) = (𝑛C𝑚))
3433eleq1d 2256 . . . . 5 (𝑘 = 𝑚 → ((𝑛C𝑘) ∈ ℕ0 ↔ (𝑛C𝑚) ∈ ℕ0))
3534cbvralv 2715 . . . 4 (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 ↔ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0)
36 bcpasc 10760 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
3736adantlr 477 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
38 oveq2 5896 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
3938eleq1d 2256 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
4039rspccva 2852 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
41 peano2zm 9305 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
42 oveq2 5896 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (𝑛C𝑚) = (𝑛C(𝑘 − 1)))
4342eleq1d 2256 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C(𝑘 − 1)) ∈ ℕ0))
4443rspccva 2852 . . . . . . . . . 10 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4541, 44sylan2 286 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4640, 45nn0addcld 9247 . . . . . . . 8 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4746adantll 476 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4837, 47eqeltrrd 2265 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛 + 1)C𝑘) ∈ ℕ0)
4948ralrimiva 2560 . . . . 5 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0)
5049ex 115 . . . 4 (𝑛 ∈ ℕ0 → (∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
5135, 50biimtrid 152 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
523, 6, 9, 12, 32, 51nn0ind 9381 . 2 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0)
53 oveq2 5896 . . . 4 (𝑘 = 𝐾 → (𝑁C𝑘) = (𝑁C𝐾))
5453eleq1d 2256 . . 3 (𝑘 = 𝐾 → ((𝑁C𝑘) ∈ ℕ0 ↔ (𝑁C𝐾) ∈ ℕ0))
5554rspccva 2852 . 2 ((∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
5652, 55sylan 283 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 979   = wceq 1363  wcel 2158  wral 2465  (class class class)co 5888  0cc0 7825  1c1 7826   + caddc 7828  cmin 8142  0cn0 9190  cz 9267  ...cfz 10022  Ccbc 10741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-seqfrec 10460  df-fac 10720  df-bc 10742
This theorem is referenced by:  bccl2  10762  bcn2m1  10763  bcn2p1  10764  binomlem  11505  bcxmas  11511
  Copyright terms: Public domain W3C validator