| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5929 |
. . . . 5
⊢ (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘)) |
| 2 | 1 | eleq1d 2265 |
. . . 4
⊢ (𝑚 = 0 → ((𝑚C𝑘) ∈ ℕ0 ↔ (0C𝑘) ∈
ℕ0)) |
| 3 | 2 | ralbidv 2497 |
. . 3
⊢ (𝑚 = 0 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
(0C𝑘) ∈
ℕ0)) |
| 4 | | oveq1 5929 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘)) |
| 5 | 4 | eleq1d 2265 |
. . . 4
⊢ (𝑚 = 𝑛 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑛C𝑘) ∈
ℕ0)) |
| 6 | 5 | ralbidv 2497 |
. . 3
⊢ (𝑚 = 𝑛 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
(𝑛C𝑘) ∈
ℕ0)) |
| 7 | | oveq1 5929 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘)) |
| 8 | 7 | eleq1d 2265 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) ∈ ℕ0 ↔ ((𝑛 + 1)C𝑘) ∈
ℕ0)) |
| 9 | 8 | ralbidv 2497 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
((𝑛 + 1)C𝑘) ∈
ℕ0)) |
| 10 | | oveq1 5929 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘)) |
| 11 | 10 | eleq1d 2265 |
. . . 4
⊢ (𝑚 = 𝑁 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑁C𝑘) ∈
ℕ0)) |
| 12 | 11 | ralbidv 2497 |
. . 3
⊢ (𝑚 = 𝑁 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
(𝑁C𝑘) ∈
ℕ0)) |
| 13 | | elfz1eq 10110 |
. . . . . . 7
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
| 14 | 13 | adantl 277 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0) |
| 15 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
| 16 | | 0nn0 9264 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 17 | | bcn0 10847 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ (0C0) =
1 |
| 19 | | 1nn0 9265 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 20 | 18, 19 | eqeltri 2269 |
. . . . . . 7
⊢ (0C0)
∈ ℕ0 |
| 21 | 15, 20 | eqeltrdi 2287 |
. . . . . 6
⊢ (𝑘 = 0 → (0C𝑘) ∈
ℕ0) |
| 22 | 14, 21 | syl 14 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → (0C𝑘) ∈
ℕ0) |
| 23 | | bcval3 10843 |
. . . . . . 7
⊢ ((0
∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0) |
| 24 | 16, 23 | mp3an1 1335 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ ¬
𝑘 ∈ (0...0)) →
(0C𝑘) = 0) |
| 25 | 24, 16 | eqeltrdi 2287 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ ¬
𝑘 ∈ (0...0)) →
(0C𝑘) ∈
ℕ0) |
| 26 | | 0zd 9338 |
. . . . . 6
⊢ (𝑘 ∈ ℤ → 0 ∈
ℤ) |
| 27 | | fzdcel 10115 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ ∧ 0 ∈ ℤ) → DECID 𝑘 ∈ (0...0)) |
| 28 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID 𝑘 ∈ (0...0) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0))) |
| 29 | 27, 28 | syl 14 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ ∧ 0 ∈ ℤ) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0))) |
| 30 | 26, 26, 29 | mpd3an23 1350 |
. . . . 5
⊢ (𝑘 ∈ ℤ → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈
(0...0))) |
| 31 | 22, 25, 30 | mpjaodan 799 |
. . . 4
⊢ (𝑘 ∈ ℤ → (0C𝑘) ∈
ℕ0) |
| 32 | 31 | rgen 2550 |
. . 3
⊢
∀𝑘 ∈
ℤ (0C𝑘) ∈
ℕ0 |
| 33 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝑛C𝑘) = (𝑛C𝑚)) |
| 34 | 33 | eleq1d 2265 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝑛C𝑘) ∈ ℕ0 ↔ (𝑛C𝑚) ∈
ℕ0)) |
| 35 | 34 | cbvralv 2729 |
. . . 4
⊢
(∀𝑘 ∈
ℤ (𝑛C𝑘) ∈ ℕ0
↔ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈
ℕ0) |
| 36 | | bcpasc 10858 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘)) |
| 37 | 36 | adantlr 477 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘)) |
| 38 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘)) |
| 39 | 38 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C𝑘) ∈
ℕ0)) |
| 40 | 39 | rspccva 2867 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑛C𝑘) ∈
ℕ0) |
| 41 | | peano2zm 9364 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
| 42 | | oveq2 5930 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (𝑛C𝑚) = (𝑛C(𝑘 − 1))) |
| 43 | 42 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C(𝑘 − 1)) ∈
ℕ0)) |
| 44 | 43 | rspccva 2867 |
. . . . . . . . . 10
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑛C(𝑘 − 1)) ∈
ℕ0) |
| 45 | 41, 44 | sylan2 286 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑛C(𝑘 − 1)) ∈
ℕ0) |
| 46 | 40, 45 | nn0addcld 9306 |
. . . . . . . 8
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈
ℕ0) |
| 47 | 46 | adantll 476 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈
ℕ0) |
| 48 | 37, 47 | eqeltrrd 2274 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
∧ 𝑘 ∈ ℤ)
→ ((𝑛 + 1)C𝑘) ∈
ℕ0) |
| 49 | 48 | ralrimiva 2570 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
→ ∀𝑘 ∈
ℤ ((𝑛 + 1)C𝑘) ∈
ℕ0) |
| 50 | 49 | ex 115 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
→ ∀𝑘 ∈
ℤ ((𝑛 + 1)C𝑘) ∈
ℕ0)) |
| 51 | 35, 50 | biimtrid 152 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ (∀𝑘 ∈
ℤ (𝑛C𝑘) ∈ ℕ0
→ ∀𝑘 ∈
ℤ ((𝑛 + 1)C𝑘) ∈
ℕ0)) |
| 52 | 3, 6, 9, 12, 32, 51 | nn0ind 9440 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ∀𝑘 ∈
ℤ (𝑁C𝑘) ∈
ℕ0) |
| 53 | | oveq2 5930 |
. . . 4
⊢ (𝑘 = 𝐾 → (𝑁C𝑘) = (𝑁C𝐾)) |
| 54 | 53 | eleq1d 2265 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝑁C𝑘) ∈ ℕ0 ↔ (𝑁C𝐾) ∈
ℕ0)) |
| 55 | 54 | rspccva 2867 |
. 2
⊢
((∀𝑘 ∈
ℤ (𝑁C𝑘) ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝑁C𝐾) ∈
ℕ0) |
| 56 | 52, 55 | sylan 283 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝑁C𝐾) ∈
ℕ0) |