Step | Hyp | Ref
| Expression |
1 | | oveq1 5849 |
. . . . 5
⊢ (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘)) |
2 | 1 | eleq1d 2235 |
. . . 4
⊢ (𝑚 = 0 → ((𝑚C𝑘) ∈ ℕ0 ↔ (0C𝑘) ∈
ℕ0)) |
3 | 2 | ralbidv 2466 |
. . 3
⊢ (𝑚 = 0 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
(0C𝑘) ∈
ℕ0)) |
4 | | oveq1 5849 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘)) |
5 | 4 | eleq1d 2235 |
. . . 4
⊢ (𝑚 = 𝑛 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑛C𝑘) ∈
ℕ0)) |
6 | 5 | ralbidv 2466 |
. . 3
⊢ (𝑚 = 𝑛 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
(𝑛C𝑘) ∈
ℕ0)) |
7 | | oveq1 5849 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘)) |
8 | 7 | eleq1d 2235 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) ∈ ℕ0 ↔ ((𝑛 + 1)C𝑘) ∈
ℕ0)) |
9 | 8 | ralbidv 2466 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
((𝑛 + 1)C𝑘) ∈
ℕ0)) |
10 | | oveq1 5849 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘)) |
11 | 10 | eleq1d 2235 |
. . . 4
⊢ (𝑚 = 𝑁 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑁C𝑘) ∈
ℕ0)) |
12 | 11 | ralbidv 2466 |
. . 3
⊢ (𝑚 = 𝑁 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔
∀𝑘 ∈ ℤ
(𝑁C𝑘) ∈
ℕ0)) |
13 | | elfz1eq 9970 |
. . . . . . 7
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
14 | 13 | adantl 275 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0) |
15 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
16 | | 0nn0 9129 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
17 | | bcn0 10668 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ (0C0) =
1 |
19 | | 1nn0 9130 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
20 | 18, 19 | eqeltri 2239 |
. . . . . . 7
⊢ (0C0)
∈ ℕ0 |
21 | 15, 20 | eqeltrdi 2257 |
. . . . . 6
⊢ (𝑘 = 0 → (0C𝑘) ∈
ℕ0) |
22 | 14, 21 | syl 14 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → (0C𝑘) ∈
ℕ0) |
23 | | bcval3 10664 |
. . . . . . 7
⊢ ((0
∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0) |
24 | 16, 23 | mp3an1 1314 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ ¬
𝑘 ∈ (0...0)) →
(0C𝑘) = 0) |
25 | 24, 16 | eqeltrdi 2257 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ ¬
𝑘 ∈ (0...0)) →
(0C𝑘) ∈
ℕ0) |
26 | | 0zd 9203 |
. . . . . 6
⊢ (𝑘 ∈ ℤ → 0 ∈
ℤ) |
27 | | fzdcel 9975 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ ∧ 0 ∈ ℤ) → DECID 𝑘 ∈ (0...0)) |
28 | | exmiddc 826 |
. . . . . . 7
⊢
(DECID 𝑘 ∈ (0...0) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0))) |
29 | 27, 28 | syl 14 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ ∧ 0 ∈ ℤ) → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈ (0...0))) |
30 | 26, 26, 29 | mpd3an23 1329 |
. . . . 5
⊢ (𝑘 ∈ ℤ → (𝑘 ∈ (0...0) ∨ ¬ 𝑘 ∈
(0...0))) |
31 | 22, 25, 30 | mpjaodan 788 |
. . . 4
⊢ (𝑘 ∈ ℤ → (0C𝑘) ∈
ℕ0) |
32 | 31 | rgen 2519 |
. . 3
⊢
∀𝑘 ∈
ℤ (0C𝑘) ∈
ℕ0 |
33 | | oveq2 5850 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝑛C𝑘) = (𝑛C𝑚)) |
34 | 33 | eleq1d 2235 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝑛C𝑘) ∈ ℕ0 ↔ (𝑛C𝑚) ∈
ℕ0)) |
35 | 34 | cbvralv 2692 |
. . . 4
⊢
(∀𝑘 ∈
ℤ (𝑛C𝑘) ∈ ℕ0
↔ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈
ℕ0) |
36 | | bcpasc 10679 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘)) |
37 | 36 | adantlr 469 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘)) |
38 | | oveq2 5850 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘)) |
39 | 38 | eleq1d 2235 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C𝑘) ∈
ℕ0)) |
40 | 39 | rspccva 2829 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑛C𝑘) ∈
ℕ0) |
41 | | peano2zm 9229 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
42 | | oveq2 5850 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (𝑛C𝑚) = (𝑛C(𝑘 − 1))) |
43 | 42 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C(𝑘 − 1)) ∈
ℕ0)) |
44 | 43 | rspccva 2829 |
. . . . . . . . . 10
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑛C(𝑘 − 1)) ∈
ℕ0) |
45 | 41, 44 | sylan2 284 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑛C(𝑘 − 1)) ∈
ℕ0) |
46 | 40, 45 | nn0addcld 9171 |
. . . . . . . 8
⊢
((∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈
ℕ0) |
47 | 46 | adantll 468 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
∧ 𝑘 ∈ ℤ)
→ ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈
ℕ0) |
48 | 37, 47 | eqeltrrd 2244 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
∧ 𝑘 ∈ ℤ)
→ ((𝑛 + 1)C𝑘) ∈
ℕ0) |
49 | 48 | ralrimiva 2539 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0)
→ ∀𝑘 ∈
ℤ ((𝑛 + 1)C𝑘) ∈
ℕ0) |
50 | 49 | ex 114 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (∀𝑚 ∈
ℤ (𝑛C𝑚) ∈ ℕ0
→ ∀𝑘 ∈
ℤ ((𝑛 + 1)C𝑘) ∈
ℕ0)) |
51 | 35, 50 | syl5bi 151 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ (∀𝑘 ∈
ℤ (𝑛C𝑘) ∈ ℕ0
→ ∀𝑘 ∈
ℤ ((𝑛 + 1)C𝑘) ∈
ℕ0)) |
52 | 3, 6, 9, 12, 32, 51 | nn0ind 9305 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ∀𝑘 ∈
ℤ (𝑁C𝑘) ∈
ℕ0) |
53 | | oveq2 5850 |
. . . 4
⊢ (𝑘 = 𝐾 → (𝑁C𝑘) = (𝑁C𝐾)) |
54 | 53 | eleq1d 2235 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝑁C𝑘) ∈ ℕ0 ↔ (𝑁C𝐾) ∈
ℕ0)) |
55 | 54 | rspccva 2829 |
. 2
⊢
((∀𝑘 ∈
ℤ (𝑁C𝑘) ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝑁C𝐾) ∈
ℕ0) |
56 | 52, 55 | sylan 281 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ ℤ)
→ (𝑁C𝐾) ∈
ℕ0) |