| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1205 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: stoic2b 1441 elovmpo 6126 oav 6521 omv 6522 oeiv 6523 f1oeng 6825 mulpipq2 7455 ltrnqg 7504 genipv 7593 subval 8235 subap0 8687 xaddval 9937 fzrevral3 10199 fzoval 10240 subsq2 10756 bcval 10858 dvdsmul1 11995 dvdsmul2 11996 gcdval 12151 eucalgval2 12246 setsvalg 12733 restval 12947 xpsfval 13050 imasmnd2 13154 ismhm 13163 mhmex 13164 subsubm 13185 subsubg 13403 qusinv 13442 isghm 13449 ghminv 13456 rngrz 13578 srglmhm 13625 ringrz 13676 imasring 13696 isrhm 13790 01eq0ring 13821 restin 14496 hmeofvalg 14623 cncfval 14892 rpcxpef 15214 rpcxpneg 15227 sgmval 15303 fsumdvdsmul 15311 lgsval 15329 2lgsoddprmlem4 15437 |
| Copyright terms: Public domain | W3C validator |