![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1205 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: stoic2b 1441 elovmpo 6117 oav 6507 omv 6508 oeiv 6509 f1oeng 6811 mulpipq2 7431 ltrnqg 7480 genipv 7569 subval 8211 subap0 8662 xaddval 9911 fzrevral3 10173 fzoval 10214 subsq2 10718 bcval 10820 dvdsmul1 11956 dvdsmul2 11957 gcdval 12096 eucalgval2 12191 setsvalg 12648 restval 12856 xpsfval 12931 ismhm 13033 mhmex 13034 subsubm 13055 subsubg 13267 qusinv 13306 isghm 13313 ghminv 13320 rngrz 13442 srglmhm 13489 ringrz 13540 imasring 13560 isrhm 13654 01eq0ring 13685 restin 14344 hmeofvalg 14471 cncfval 14727 rpcxpef 15029 rpcxpneg 15042 lgsval 15120 2lgsoddprmlem4 15200 |
Copyright terms: Public domain | W3C validator |