ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpd3an3 GIF version

Theorem mpd3an3 1333
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.)
Hypotheses
Ref Expression
mpd3an3.2 ((𝜑𝜓) → 𝜒)
mpd3an3.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mpd3an3 ((𝜑𝜓) → 𝜃)

Proof of Theorem mpd3an3
StepHypRef Expression
1 mpd3an3.2 . 2 ((𝜑𝜓) → 𝜒)
2 mpd3an3.3 . . 3 ((𝜑𝜓𝜒) → 𝜃)
323expa 1198 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpdan 419 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  stoic2b  1423  elovmpo  6050  oav  6433  omv  6434  oeiv  6435  f1oeng  6735  mulpipq2  7333  ltrnqg  7382  genipv  7471  subval  8111  subap0  8562  xaddval  9802  fzrevral3  10063  fzoval  10104  subsq2  10583  bcval  10683  dvdsmul1  11775  dvdsmul2  11776  gcdval  11914  eucalgval2  12007  setsvalg  12446  restval  12585  ismhm  12685  restin  12970  hmeofvalg  13097  cncfval  13353  rpcxpef  13609  rpcxpneg  13622  lgsval  13699
  Copyright terms: Public domain W3C validator