| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1227 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: stoic2b 1472 elovmpo 6210 oav 6608 omv 6609 oeiv 6610 f1oeng 6916 mulpipq2 7566 ltrnqg 7615 genipv 7704 subval 8346 subap0 8798 xaddval 10049 fzrevral3 10311 fzoval 10352 subsq2 10877 bcval 10979 ccatws1ls 11181 swrdrlen 11201 pfxpfxid 11249 pfxcctswrd 11250 dvdsmul1 12332 dvdsmul2 12333 gcdval 12488 eucalgval2 12583 setsvalg 13070 restval 13286 xpsfval 13389 imasmnd2 13493 ismhm 13502 mhmex 13503 subsubm 13524 subsubg 13742 qusinv 13781 isghm 13788 ghminv 13795 rngrz 13917 srglmhm 13964 ringrz 14015 imasring 14035 isrhm 14130 01eq0ring 14161 restin 14858 hmeofvalg 14985 cncfval 15254 rpcxpef 15576 rpcxpneg 15589 sgmval 15665 fsumdvdsmul 15673 lgsval 15691 2lgsoddprmlem4 15799 |
| Copyright terms: Public domain | W3C validator |