| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1206 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: stoic2b 1450 elovmpo 6152 oav 6547 omv 6548 oeiv 6549 f1oeng 6855 mulpipq2 7491 ltrnqg 7540 genipv 7629 subval 8271 subap0 8723 xaddval 9974 fzrevral3 10236 fzoval 10277 subsq2 10799 bcval 10901 ccatws1ls 11102 swrdrlen 11122 pfxpfxid 11168 dvdsmul1 12168 dvdsmul2 12169 gcdval 12324 eucalgval2 12419 setsvalg 12906 restval 13121 xpsfval 13224 imasmnd2 13328 ismhm 13337 mhmex 13338 subsubm 13359 subsubg 13577 qusinv 13616 isghm 13623 ghminv 13630 rngrz 13752 srglmhm 13799 ringrz 13850 imasring 13870 isrhm 13964 01eq0ring 13995 restin 14692 hmeofvalg 14819 cncfval 15088 rpcxpef 15410 rpcxpneg 15423 sgmval 15499 fsumdvdsmul 15507 lgsval 15525 2lgsoddprmlem4 15633 |
| Copyright terms: Public domain | W3C validator |