| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1208 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: stoic2b 1452 elovmpo 6175 oav 6570 omv 6571 oeiv 6572 f1oeng 6878 mulpipq2 7526 ltrnqg 7575 genipv 7664 subval 8306 subap0 8758 xaddval 10009 fzrevral3 10271 fzoval 10312 subsq2 10836 bcval 10938 ccatws1ls 11139 swrdrlen 11159 pfxpfxid 11207 pfxcctswrd 11208 dvdsmul1 12290 dvdsmul2 12291 gcdval 12446 eucalgval2 12541 setsvalg 13028 restval 13244 xpsfval 13347 imasmnd2 13451 ismhm 13460 mhmex 13461 subsubm 13482 subsubg 13700 qusinv 13739 isghm 13746 ghminv 13753 rngrz 13875 srglmhm 13922 ringrz 13973 imasring 13993 isrhm 14087 01eq0ring 14118 restin 14815 hmeofvalg 14942 cncfval 15211 rpcxpef 15533 rpcxpneg 15546 sgmval 15622 fsumdvdsmul 15630 lgsval 15648 2lgsoddprmlem4 15756 |
| Copyright terms: Public domain | W3C validator |