| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1205 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: stoic2b 1441 elovmpo 6126 oav 6521 omv 6522 oeiv 6523 f1oeng 6825 mulpipq2 7457 ltrnqg 7506 genipv 7595 subval 8237 subap0 8689 xaddval 9939 fzrevral3 10201 fzoval 10242 subsq2 10758 bcval 10860 dvdsmul1 11997 dvdsmul2 11998 gcdval 12153 eucalgval2 12248 setsvalg 12735 restval 12949 xpsfval 13052 imasmnd2 13156 ismhm 13165 mhmex 13166 subsubm 13187 subsubg 13405 qusinv 13444 isghm 13451 ghminv 13458 rngrz 13580 srglmhm 13627 ringrz 13678 imasring 13698 isrhm 13792 01eq0ring 13823 restin 14520 hmeofvalg 14647 cncfval 14916 rpcxpef 15238 rpcxpneg 15251 sgmval 15327 fsumdvdsmul 15335 lgsval 15353 2lgsoddprmlem4 15461 |
| Copyright terms: Public domain | W3C validator |