![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1143 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 412 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: stoic2b 1364 elovmpt2 5845 oav 6215 omv 6216 oeiv 6217 f1oeng 6474 mulpipq2 6930 ltrnqg 6979 genipv 7068 subval 7674 subap0 8118 fzrevral3 9521 fzoval 9559 subsq2 10062 bcval 10157 dvdsmul1 11096 dvdsmul2 11097 gcdval 11229 eucalgval2 11313 setsvalg 11524 cncfval 11628 |
Copyright terms: Public domain | W3C validator |