![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpd3an3 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1203 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 421 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: stoic2b 1430 elovmpo 6075 oav 6458 omv 6459 oeiv 6460 f1oeng 6760 mulpipq2 7373 ltrnqg 7422 genipv 7511 subval 8152 subap0 8603 xaddval 9848 fzrevral3 10110 fzoval 10151 subsq2 10631 bcval 10732 dvdsmul1 11823 dvdsmul2 11824 gcdval 11963 eucalgval2 12056 setsvalg 12495 restval 12700 xpsfval 12774 ismhm 12860 subsubg 13067 srglmhm 13187 ringrz 13234 01eq0ring 13341 restin 13837 hmeofvalg 13964 cncfval 14220 rpcxpef 14476 rpcxpneg 14489 lgsval 14566 2lgsoddprmlem4 14621 |
Copyright terms: Public domain | W3C validator |