ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpd3an3 GIF version

Theorem mpd3an3 1328
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.)
Hypotheses
Ref Expression
mpd3an3.2 ((𝜑𝜓) → 𝜒)
mpd3an3.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mpd3an3 ((𝜑𝜓) → 𝜃)

Proof of Theorem mpd3an3
StepHypRef Expression
1 mpd3an3.2 . 2 ((𝜑𝜓) → 𝜒)
2 mpd3an3.3 . . 3 ((𝜑𝜓𝜒) → 𝜃)
323expa 1193 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpdan 418 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  stoic2b  1418  elovmpo  6039  oav  6422  omv  6423  oeiv  6424  f1oeng  6723  mulpipq2  7312  ltrnqg  7361  genipv  7450  subval  8090  subap0  8541  xaddval  9781  fzrevral3  10042  fzoval  10083  subsq2  10562  bcval  10662  dvdsmul1  11753  dvdsmul2  11754  gcdval  11892  eucalgval2  11985  setsvalg  12424  restval  12562  restin  12816  hmeofvalg  12943  cncfval  13199  rpcxpef  13455  rpcxpneg  13468  lgsval  13545
  Copyright terms: Public domain W3C validator