ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvds GIF version

Theorem pw2dvds 12278
Description: A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvds (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem pw2dvds
StepHypRef Expression
1 id 19 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 2nn 9129 . . . 4 2 ∈ ℕ
3 nnnn0 9233 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 nnexpcl 10597 . . . 4 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
52, 3, 4sylancr 414 . . 3 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ)
6 1zzd 9330 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℤ)
7 2z 9331 . . . . . 6 2 ∈ ℤ
8 zexpcl 10599 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
97, 3, 8sylancr 414 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ)
109, 6zsubcld 9430 . . . 4 (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℤ)
11 nnz 9322 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 nnge1 8991 . . . 4 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
13 uzid 9592 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
147, 13ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
15 bernneq3 10707 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
1614, 3, 15sylancr 414 . . . . 5 (𝑁 ∈ ℕ → 𝑁 < (2↑𝑁))
17 zltlem1 9360 . . . . . 6 ((𝑁 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1)))
1811, 9, 17syl2anc 411 . . . . 5 (𝑁 ∈ ℕ → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1)))
1916, 18mpbid 147 . . . 4 (𝑁 ∈ ℕ → 𝑁 ≤ ((2↑𝑁) − 1))
20 elfz4 10070 . . . 4 (((1 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁 ≤ ((2↑𝑁) − 1))) → 𝑁 ∈ (1...((2↑𝑁) − 1)))
216, 10, 11, 12, 19, 20syl32anc 1257 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ (1...((2↑𝑁) − 1)))
22 fzm1ndvds 11972 . . 3 (((2↑𝑁) ∈ ℕ ∧ 𝑁 ∈ (1...((2↑𝑁) − 1))) → ¬ (2↑𝑁) ∥ 𝑁)
235, 21, 22syl2anc 411 . 2 (𝑁 ∈ ℕ → ¬ (2↑𝑁) ∥ 𝑁)
24 pw2dvdslemn 12277 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ¬ (2↑𝑁) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
251, 23, 24mpd3an23 1350 1 (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2160  wrex 2469   class class class wbr 4025  cfv 5242  (class class class)co 5906  1c1 7859   + caddc 7861   < clt 8040  cle 8041  cmin 8176  cn 8968  2c2 9019  0cn0 9226  cz 9303  cuz 9578  ...cfz 10060  cexp 10583  cdvds 11904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976  ax-arch 7977
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-if 3554  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-po 4321  df-iso 4322  df-iord 4391  df-on 4393  df-ilim 4394  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-frec 6431  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-2 9027  df-n0 9227  df-z 9304  df-uz 9579  df-q 9671  df-rp 9706  df-fz 10061  df-fl 10325  df-mod 10380  df-seqfrec 10505  df-exp 10584  df-dvds 11905
This theorem is referenced by:  pw2dvdseu  12280  oddpwdclemdvds  12282  oddpwdclemndvds  12283
  Copyright terms: Public domain W3C validator