![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw2dvds | GIF version |
Description: A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
Ref | Expression |
---|---|
pw2dvds | ⊢ (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
2 | 2nn 9083 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | nnnn0 9186 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | nnexpcl 10536 | . . . 4 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ) | |
5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
6 | 1zzd 9283 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℤ) | |
7 | 2z 9284 | . . . . . 6 ⊢ 2 ∈ ℤ | |
8 | zexpcl 10538 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ) | |
9 | 7, 3, 8 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ) |
10 | 9, 6 | zsubcld 9383 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℤ) |
11 | nnz 9275 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | nnge1 8945 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
13 | uzid 9545 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
14 | 7, 13 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
15 | bernneq3 10646 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁)) | |
16 | 14, 3, 15 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 < (2↑𝑁)) |
17 | zltlem1 9313 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1))) | |
18 | 11, 9, 17 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1))) |
19 | 16, 18 | mpbid 147 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ≤ ((2↑𝑁) − 1)) |
20 | elfz4 10021 | . . . 4 ⊢ (((1 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ ((2↑𝑁) − 1))) → 𝑁 ∈ (1...((2↑𝑁) − 1))) | |
21 | 6, 10, 11, 12, 19, 20 | syl32anc 1246 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (1...((2↑𝑁) − 1))) |
22 | fzm1ndvds 11865 | . . 3 ⊢ (((2↑𝑁) ∈ ℕ ∧ 𝑁 ∈ (1...((2↑𝑁) − 1))) → ¬ (2↑𝑁) ∥ 𝑁) | |
23 | 5, 21, 22 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ → ¬ (2↑𝑁) ∥ 𝑁) |
24 | pw2dvdslemn 12168 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ¬ (2↑𝑁) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | |
25 | 1, 23, 24 | mpd3an23 1339 | 1 ⊢ (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 1c1 7815 + caddc 7817 < clt 7995 ≤ cle 7996 − cmin 8131 ℕcn 8922 2c2 8973 ℕ0cn0 9179 ℤcz 9256 ℤ≥cuz 9531 ...cfz 10011 ↑cexp 10522 ∥ cdvds 11797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-fz 10012 df-fl 10273 df-mod 10326 df-seqfrec 10449 df-exp 10523 df-dvds 11798 |
This theorem is referenced by: pw2dvdseu 12171 oddpwdclemdvds 12173 oddpwdclemndvds 12174 |
Copyright terms: Public domain | W3C validator |