ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvds GIF version

Theorem pw2dvds 12683
Description: A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvds (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem pw2dvds
StepHypRef Expression
1 id 19 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 2nn 9268 . . . 4 2 ∈ ℕ
3 nnnn0 9372 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 nnexpcl 10769 . . . 4 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
52, 3, 4sylancr 414 . . 3 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ)
6 1zzd 9469 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℤ)
7 2z 9470 . . . . . 6 2 ∈ ℤ
8 zexpcl 10771 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
97, 3, 8sylancr 414 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ)
109, 6zsubcld 9570 . . . 4 (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℤ)
11 nnz 9461 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 nnge1 9129 . . . 4 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
13 uzid 9732 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
147, 13ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
15 bernneq3 10879 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
1614, 3, 15sylancr 414 . . . . 5 (𝑁 ∈ ℕ → 𝑁 < (2↑𝑁))
17 zltlem1 9500 . . . . . 6 ((𝑁 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1)))
1811, 9, 17syl2anc 411 . . . . 5 (𝑁 ∈ ℕ → (𝑁 < (2↑𝑁) ↔ 𝑁 ≤ ((2↑𝑁) − 1)))
1916, 18mpbid 147 . . . 4 (𝑁 ∈ ℕ → 𝑁 ≤ ((2↑𝑁) − 1))
20 elfz4 10210 . . . 4 (((1 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁 ≤ ((2↑𝑁) − 1))) → 𝑁 ∈ (1...((2↑𝑁) − 1)))
216, 10, 11, 12, 19, 20syl32anc 1279 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ (1...((2↑𝑁) − 1)))
22 fzm1ndvds 12362 . . 3 (((2↑𝑁) ∈ ℕ ∧ 𝑁 ∈ (1...((2↑𝑁) − 1))) → ¬ (2↑𝑁) ∥ 𝑁)
235, 21, 22syl2anc 411 . 2 (𝑁 ∈ ℕ → ¬ (2↑𝑁) ∥ 𝑁)
24 pw2dvdslemn 12682 . 2 ((𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ¬ (2↑𝑁) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
251, 23, 24mpd3an23 1373 1 (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2200  wrex 2509   class class class wbr 4082  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cmin 8313  cn 9106  2c2 9157  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200  cexp 10755  cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  pw2dvdseu  12685  oddpwdclemdvds  12687  oddpwdclemndvds  12688
  Copyright terms: Public domain W3C validator