| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpvalg | GIF version | ||
| Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpval.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| mgpvalg | ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | df-mgp 13654 | . . 3 ⊢ mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉)) | |
| 3 | id 19 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 4 | fveq2 5575 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
| 5 | mgpval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2255 | . . . . 5 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
| 7 | 6 | opeq2d 3825 | . . . 4 ⊢ (𝑟 = 𝑅 → 〈(+g‘ndx), (.r‘𝑟)〉 = 〈(+g‘ndx), · 〉) |
| 8 | 3, 7 | oveq12d 5961 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 9 | elex 2782 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 10 | plusgslid 12915 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 11 | 10 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 12 | 11 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (+g‘ndx) ∈ ℕ) |
| 13 | mulrslid 12935 | . . . . . 6 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 14 | 13 | slotex 12830 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 15 | 5, 14 | eqeltrid 2291 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
| 16 | setsex 12835 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ∈ ℕ ∧ · ∈ V) → (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V) | |
| 17 | 12, 15, 16 | mpd3an23 1351 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V) |
| 18 | 2, 8, 9, 17 | fvmptd3 5672 | . 2 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| 19 | 1, 18 | eqtrid 2249 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 〈cop 3635 ‘cfv 5270 (class class class)co 5943 ℕcn 9035 ndxcnx 12800 sSet csts 12801 Slot cslot 12802 +gcplusg 12880 .rcmulr 12881 mulGrpcmgp 13653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-sets 12810 df-plusg 12893 df-mulr 12894 df-mgp 13654 |
| This theorem is referenced by: mgpplusgg 13657 mgpex 13658 mgpbasg 13659 mgpscag 13660 mgptsetg 13661 mgpdsg 13663 mgpress 13664 |
| Copyright terms: Public domain | W3C validator |