![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpvalg | GIF version |
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | β’ π = (mulGrpβπ ) |
mgpval.2 | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
mgpvalg | β’ (π β π β π = (π sSet β¨(+gβndx), Β· β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.1 | . 2 β’ π = (mulGrpβπ ) | |
2 | df-mgp 13230 | . . 3 β’ mulGrp = (π β V β¦ (π sSet β¨(+gβndx), (.rβπ)β©)) | |
3 | id 19 | . . . 4 β’ (π = π β π = π ) | |
4 | fveq2 5527 | . . . . . 6 β’ (π = π β (.rβπ) = (.rβπ )) | |
5 | mgpval.2 | . . . . . 6 β’ Β· = (.rβπ ) | |
6 | 4, 5 | eqtr4di 2238 | . . . . 5 β’ (π = π β (.rβπ) = Β· ) |
7 | 6 | opeq2d 3797 | . . . 4 β’ (π = π β β¨(+gβndx), (.rβπ)β© = β¨(+gβndx), Β· β©) |
8 | 3, 7 | oveq12d 5906 | . . 3 β’ (π = π β (π sSet β¨(+gβndx), (.rβπ)β©) = (π sSet β¨(+gβndx), Β· β©)) |
9 | elex 2760 | . . 3 β’ (π β π β π β V) | |
10 | plusgslid 12586 | . . . . . 6 β’ (+g = Slot (+gβndx) β§ (+gβndx) β β) | |
11 | 10 | simpri 113 | . . . . 5 β’ (+gβndx) β β |
12 | 11 | a1i 9 | . . . 4 β’ (π β π β (+gβndx) β β) |
13 | mulrslid 12605 | . . . . . 6 β’ (.r = Slot (.rβndx) β§ (.rβndx) β β) | |
14 | 13 | slotex 12503 | . . . . 5 β’ (π β π β (.rβπ ) β V) |
15 | 5, 14 | eqeltrid 2274 | . . . 4 β’ (π β π β Β· β V) |
16 | setsex 12508 | . . . 4 β’ ((π β π β§ (+gβndx) β β β§ Β· β V) β (π sSet β¨(+gβndx), Β· β©) β V) | |
17 | 12, 15, 16 | mpd3an23 1349 | . . 3 β’ (π β π β (π sSet β¨(+gβndx), Β· β©) β V) |
18 | 2, 8, 9, 17 | fvmptd3 5622 | . 2 β’ (π β π β (mulGrpβπ ) = (π sSet β¨(+gβndx), Β· β©)) |
19 | 1, 18 | eqtrid 2232 | 1 β’ (π β π β π = (π sSet β¨(+gβndx), Β· β©)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1363 β wcel 2158 Vcvv 2749 β¨cop 3607 βcfv 5228 (class class class)co 5888 βcn 8933 ndxcnx 12473 sSet csts 12474 Slot cslot 12475 +gcplusg 12551 .rcmulr 12552 mulGrpcmgp 13229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-inn 8934 df-2 8992 df-3 8993 df-ndx 12479 df-slot 12480 df-sets 12483 df-plusg 12564 df-mulr 12565 df-mgp 13230 |
This theorem is referenced by: mgpplusgg 13233 mgpex 13234 mgpbasg 13235 mgpscag 13236 mgptsetg 13237 mgpdsg 13239 mgpress 13240 |
Copyright terms: Public domain | W3C validator |