![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpvalg | GIF version |
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpvalg | ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.1 | . 2 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | df-mgp 13420 | . . 3 ⊢ mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉)) | |
3 | id 19 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
4 | fveq2 5555 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
5 | mgpval.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
6 | 4, 5 | eqtr4di 2244 | . . . . 5 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
7 | 6 | opeq2d 3812 | . . . 4 ⊢ (𝑟 = 𝑅 → 〈(+g‘ndx), (.r‘𝑟)〉 = 〈(+g‘ndx), · 〉) |
8 | 3, 7 | oveq12d 5937 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 sSet 〈(+g‘ndx), (.r‘𝑟)〉) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
9 | elex 2771 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
10 | plusgslid 12733 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
11 | 10 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
12 | 11 | a1i 9 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (+g‘ndx) ∈ ℕ) |
13 | mulrslid 12752 | . . . . . 6 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
14 | 13 | slotex 12648 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
15 | 5, 14 | eqeltrid 2280 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → · ∈ V) |
16 | setsex 12653 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ∈ ℕ ∧ · ∈ V) → (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V) | |
17 | 12, 15, 16 | mpd3an23 1350 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(+g‘ndx), · 〉) ∈ V) |
18 | 2, 8, 9, 17 | fvmptd3 5652 | . 2 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
19 | 1, 18 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ‘cfv 5255 (class class class)co 5919 ℕcn 8984 ndxcnx 12618 sSet csts 12619 Slot cslot 12620 +gcplusg 12698 .rcmulr 12699 mulGrpcmgp 13419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-sets 12628 df-plusg 12711 df-mulr 12712 df-mgp 13420 |
This theorem is referenced by: mgpplusgg 13423 mgpex 13424 mgpbasg 13425 mgpscag 13426 mgptsetg 13427 mgpdsg 13429 mgpress 13430 |
Copyright terms: Public domain | W3C validator |