ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpvalg GIF version

Theorem mgpvalg 13656
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1 𝑀 = (mulGrp‘𝑅)
mgpval.2 · = (.r𝑅)
Assertion
Ref Expression
mgpvalg (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩))

Proof of Theorem mgpvalg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mgpval.1 . 2 𝑀 = (mulGrp‘𝑅)
2 df-mgp 13654 . . 3 mulGrp = (𝑟 ∈ V ↦ (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩))
3 id 19 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
4 fveq2 5575 . . . . . 6 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
5 mgpval.2 . . . . . 6 · = (.r𝑅)
64, 5eqtr4di 2255 . . . . 5 (𝑟 = 𝑅 → (.r𝑟) = · )
76opeq2d 3825 . . . 4 (𝑟 = 𝑅 → ⟨(+g‘ndx), (.r𝑟)⟩ = ⟨(+g‘ndx), · ⟩)
83, 7oveq12d 5961 . . 3 (𝑟 = 𝑅 → (𝑟 sSet ⟨(+g‘ndx), (.r𝑟)⟩) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
9 elex 2782 . . 3 (𝑅𝑉𝑅 ∈ V)
10 plusgslid 12915 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
1211a1i 9 . . . 4 (𝑅𝑉 → (+g‘ndx) ∈ ℕ)
13 mulrslid 12935 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
1413slotex 12830 . . . . 5 (𝑅𝑉 → (.r𝑅) ∈ V)
155, 14eqeltrid 2291 . . . 4 (𝑅𝑉· ∈ V)
16 setsex 12835 . . . 4 ((𝑅𝑉 ∧ (+g‘ndx) ∈ ℕ ∧ · ∈ V) → (𝑅 sSet ⟨(+g‘ndx), · ⟩) ∈ V)
1712, 15, 16mpd3an23 1351 . . 3 (𝑅𝑉 → (𝑅 sSet ⟨(+g‘ndx), · ⟩) ∈ V)
182, 8, 9, 17fvmptd3 5672 . 2 (𝑅𝑉 → (mulGrp‘𝑅) = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
191, 18eqtrid 2249 1 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  cop 3635  cfv 5270  (class class class)co 5943  cn 9035  ndxcnx 12800   sSet csts 12801  Slot cslot 12802  +gcplusg 12880  .rcmulr 12881  mulGrpcmgp 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-sets 12810  df-plusg 12893  df-mulr 12894  df-mgp 13654
This theorem is referenced by:  mgpplusgg  13657  mgpex  13658  mgpbasg  13659  mgpscag  13660  mgptsetg  13661  mgpdsg  13663  mgpress  13664
  Copyright terms: Public domain W3C validator