| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitgrpid | GIF version | ||
| Description: The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitgrp.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitgrp.2 | ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| unitgrp.3 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| unitgrpid | ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | unitgrp.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 4 | ringsrg 14018 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 5 | 1, 3, 4 | unitssd 14081 | . 2 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) |
| 6 | unitgrp.3 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 7 | 2, 6 | 1unit 14079 | . 2 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
| 8 | unitgrp.2 | . . 3 ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 9 | eqid 2229 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | 8, 9, 6 | ringidss 14000 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ⊆ (Base‘𝑅) ∧ 1 ∈ 𝑈) → 1 = (0g‘𝐺)) |
| 11 | 5, 7, 10 | mpd3an23 1373 | 1 ⊢ (𝑅 ∈ Ring → 1 = (0g‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 ↾s cress 13041 0gc0g 13297 mulGrpcmgp 13891 1rcur 13930 Ringcrg 13967 Unitcui 14058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-tpos 6397 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-cmn 13831 df-abl 13832 df-mgp 13892 df-ur 13931 df-srg 13935 df-ring 13969 df-oppr 14039 df-dvdsr 14060 df-unit 14061 |
| This theorem is referenced by: unitlinv 14098 unitrinv 14099 |
| Copyright terms: Public domain | W3C validator |