ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmid GIF version

Theorem ghmid 13379
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmid.y 𝑌 = (0g𝑆)
ghmid.z 0 = (0g𝑇)
Assertion
Ref Expression
ghmid (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )

Proof of Theorem ghmid
StepHypRef Expression
1 ghmgrp1 13375 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 eqid 2196 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
3 ghmid.y . . . . . . 7 𝑌 = (0g𝑆)
42, 3grpidcl 13161 . . . . . 6 (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆))
51, 4syl 14 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆))
6 eqid 2196 . . . . . 6 (+g𝑆) = (+g𝑆)
7 eqid 2196 . . . . . 6 (+g𝑇) = (+g𝑇)
82, 6, 7ghmlin 13378 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
95, 5, 8mpd3an23 1350 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
102, 6, 3grplid 13163 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g𝑆)𝑌) = 𝑌)
111, 5, 10syl2anc 411 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g𝑆)𝑌) = 𝑌)
1211fveq2d 5562 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = (𝐹𝑌))
139, 12eqtr3d 2231 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌))
14 ghmgrp2 13376 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
15 eqid 2196 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
162, 15ghmf 13377 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1716, 5ffvelcdmd 5698 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) ∈ (Base‘𝑇))
18 ghmid.z . . . . 5 0 = (0g𝑇)
1915, 7, 18grpid 13171 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑌) ∈ (Base‘𝑇)) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2014, 17, 19syl2anc 411 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2113, 20mpbid 147 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹𝑌))
2221eqcomd 2202 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132   GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-ghm 13371
This theorem is referenced by:  ghminv  13380  ghmmhm  13383  ghmpreima  13396  f1ghm0to0  13402  kerf1ghm  13404  zrh0  14181  zndvds0  14206
  Copyright terms: Public domain W3C validator