| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmid | GIF version | ||
| Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmid.y | ⊢ 𝑌 = (0g‘𝑆) |
| ghmid.z | ⊢ 0 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmid | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp1 13625 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
| 2 | eqid 2206 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | ghmid.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑆) | |
| 4 | 2, 3 | grpidcl 13405 | . . . . . 6 ⊢ (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆)) |
| 5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆)) |
| 6 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 7 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 8 | 2, 6, 7 | ghmlin 13628 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
| 9 | 5, 5, 8 | mpd3an23 1352 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
| 10 | 2, 6, 3 | grplid 13407 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
| 11 | 1, 5, 10 | syl2anc 411 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
| 12 | 11 | fveq2d 5587 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = (𝐹‘𝑌)) |
| 13 | 9, 12 | eqtr3d 2241 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌)) |
| 14 | ghmgrp2 13626 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
| 15 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 16 | 2, 15 | ghmf 13627 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 17 | 16, 5 | ffvelcdmd 5723 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) ∈ (Base‘𝑇)) |
| 18 | ghmid.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 19 | 15, 7, 18 | grpid 13415 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑌) ∈ (Base‘𝑇)) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
| 20 | 14, 17, 19 | syl2anc 411 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
| 21 | 13, 20 | mpbid 147 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹‘𝑌)) |
| 22 | 21 | eqcomd 2212 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 GrpHom cghm 13620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-ghm 13621 |
| This theorem is referenced by: ghminv 13630 ghmmhm 13633 ghmpreima 13646 f1ghm0to0 13652 kerf1ghm 13654 zrh0 14431 zndvds0 14456 |
| Copyright terms: Public domain | W3C validator |