ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmid GIF version

Theorem ghmid 13752
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmid.y 𝑌 = (0g𝑆)
ghmid.z 0 = (0g𝑇)
Assertion
Ref Expression
ghmid (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )

Proof of Theorem ghmid
StepHypRef Expression
1 ghmgrp1 13748 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 eqid 2209 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
3 ghmid.y . . . . . . 7 𝑌 = (0g𝑆)
42, 3grpidcl 13528 . . . . . 6 (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆))
51, 4syl 14 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆))
6 eqid 2209 . . . . . 6 (+g𝑆) = (+g𝑆)
7 eqid 2209 . . . . . 6 (+g𝑇) = (+g𝑇)
82, 6, 7ghmlin 13751 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
95, 5, 8mpd3an23 1354 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
102, 6, 3grplid 13530 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g𝑆)𝑌) = 𝑌)
111, 5, 10syl2anc 411 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g𝑆)𝑌) = 𝑌)
1211fveq2d 5607 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = (𝐹𝑌))
139, 12eqtr3d 2244 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌))
14 ghmgrp2 13749 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
15 eqid 2209 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
162, 15ghmf 13750 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1716, 5ffvelcdmd 5744 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) ∈ (Base‘𝑇))
18 ghmid.z . . . . 5 0 = (0g𝑇)
1915, 7, 18grpid 13538 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑌) ∈ (Base‘𝑇)) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2014, 17, 19syl2anc 411 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2113, 20mpbid 147 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹𝑌))
2221eqcomd 2215 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Grpcgrp 13499   GrpHom cghm 13743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-ghm 13744
This theorem is referenced by:  ghminv  13753  ghmmhm  13756  ghmpreima  13769  f1ghm0to0  13775  kerf1ghm  13777  zrh0  14554  zndvds0  14579
  Copyright terms: Public domain W3C validator