| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprex | GIF version | ||
| Description: Existence of the opposite ring. If you know that 𝑅 is a ring, see opprring 13713. (Contributed by Jim Kingdon, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| opprex.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprex | ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2196 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | opprex.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | 1, 2, 3 | opprvalg 13703 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 5 | mulrslid 12836 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 6 | 5 | simpri 113 | . . . 4 ⊢ (.r‘ndx) ∈ ℕ |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘ndx) ∈ ℕ) |
| 8 | 5 | slotex 12732 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 9 | tposexg 6325 | . . . 4 ⊢ ((.r‘𝑅) ∈ V → tpos (.r‘𝑅) ∈ V) | |
| 10 | 8, 9 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos (.r‘𝑅) ∈ V) |
| 11 | setsex 12737 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘ndx) ∈ ℕ ∧ tpos (.r‘𝑅) ∈ V) → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) ∈ V) | |
| 12 | 7, 10, 11 | mpd3an23 1350 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) ∈ V) |
| 13 | 4, 12 | eqeltrd 2273 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3626 ‘cfv 5259 (class class class)co 5925 tpos ctpos 6311 ℕcn 9009 ndxcnx 12702 sSet csts 12703 Slot cslot 12704 Basecbs 12705 .rcmulr 12783 opprcoppr 13701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-tpos 6312 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-sets 12712 df-mulr 12796 df-oppr 13702 |
| This theorem is referenced by: opprrngbg 13712 oppr0g 13715 oppr1g 13716 opprnegg 13717 opprsubgg 13718 crngridl 14164 |
| Copyright terms: Public domain | W3C validator |