| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprex | GIF version | ||
| Description: Existence of the opposite ring. If you know that 𝑅 is a ring, see opprring 13635. (Contributed by Jim Kingdon, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| opprex.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprex | ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2196 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | opprex.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | 1, 2, 3 | opprvalg 13625 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 5 | mulrslid 12809 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 6 | 5 | simpri 113 | . . . 4 ⊢ (.r‘ndx) ∈ ℕ |
| 7 | 6 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘ndx) ∈ ℕ) |
| 8 | 5 | slotex 12705 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 9 | tposexg 6316 | . . . 4 ⊢ ((.r‘𝑅) ∈ V → tpos (.r‘𝑅) ∈ V) | |
| 10 | 8, 9 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → tpos (.r‘𝑅) ∈ V) |
| 11 | setsex 12710 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘ndx) ∈ ℕ ∧ tpos (.r‘𝑅) ∈ V) → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) ∈ V) | |
| 12 | 7, 10, 11 | mpd3an23 1350 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) ∈ V) |
| 13 | 4, 12 | eqeltrd 2273 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 ‘cfv 5258 (class class class)co 5922 tpos ctpos 6302 ℕcn 8990 ndxcnx 12675 sSet csts 12676 Slot cslot 12677 Basecbs 12678 .rcmulr 12756 opprcoppr 13623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-sets 12685 df-mulr 12769 df-oppr 13624 |
| This theorem is referenced by: opprrngbg 13634 oppr0g 13637 oppr1g 13638 opprnegg 13639 opprsubgg 13640 crngridl 14086 |
| Copyright terms: Public domain | W3C validator |