![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpex | GIF version |
Description: Existence of the multiplication group. If 𝑅 is known to be a semiring, see srgmgp 13464. (Contributed by Jim Kingdon, 10-Jan-2025.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
mgpex | ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpbas.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | eqid 2193 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | 1, 2 | mgpvalg 13419 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
4 | plusgslid 12730 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
5 | 4 | simpri 113 | . . . 4 ⊢ (+g‘ndx) ∈ ℕ |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (+g‘ndx) ∈ ℕ) |
7 | mulrslid 12749 | . . . 4 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
8 | 7 | slotex 12645 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
9 | setsex 12650 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ∈ ℕ ∧ (.r‘𝑅) ∈ V) → (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉) ∈ V) | |
10 | 6, 8, 9 | mpd3an23 1350 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉) ∈ V) |
11 | 3, 10 | eqeltrd 2270 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ‘cfv 5254 (class class class)co 5918 ℕcn 8982 ndxcnx 12615 sSet csts 12616 Slot cslot 12617 +gcplusg 12695 .rcmulr 12696 mulGrpcmgp 13416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-sets 12625 df-plusg 12708 df-mulr 12709 df-mgp 13417 |
This theorem is referenced by: mgpress 13427 isrngd 13449 rngpropd 13451 ringidss 13525 oppr1g 13578 unitgrpbasd 13611 unitgrp 13612 unitlinv 13622 unitrinv 13623 rngidpropdg 13642 rhmunitinv 13674 rnglidlmmgm 13992 expghmap 14095 |
Copyright terms: Public domain | W3C validator |