ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-opab GIF version

Definition df-opab 4092
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3copab 4090 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 vz . . . . . . . 8 setvar 𝑧
65cv 1363 . . . . . . 7 class 𝑧
72cv 1363 . . . . . . . 8 class 𝑥
83cv 1363 . . . . . . . 8 class 𝑦
97, 8cop 3622 . . . . . . 7 class 𝑥, 𝑦
106, 9wceq 1364 . . . . . 6 wff 𝑧 = ⟨𝑥, 𝑦
1110, 1wa 104 . . . . 5 wff (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1211, 3wex 1503 . . . 4 wff 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1312, 2wex 1503 . . 3 wff 𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1413, 5cab 2179 . 2 class {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
154, 14wceq 1364 1 wff {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff set class
This definition is referenced by:  opabss  4094  opabbid  4095  nfopab  4098  nfopab1  4099  nfopab2  4100  cbvopab  4101  cbvopab1  4103  cbvopab2  4104  cbvopab1s  4105  cbvopab2v  4107  unopab  4109  opabid  4287  elopab  4289  ssopab2  4307  iunopab  4313  elxpi  4676  rabxp  4697  csbxpg  4741  relopabi  4788  opabbrex  5963  dfoprab2  5966  dmoprab  6000  dfopab2  6244  cnvoprab  6289
  Copyright terms: Public domain W3C validator