| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-opab | GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 4108 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1372 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1372 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1372 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 3637 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1373 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 104 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1516 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1516 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2192 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1373 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff set class |
| This definition is referenced by: opabss 4112 opabbid 4113 nfopab 4116 nfopab1 4117 nfopab2 4118 cbvopab 4119 cbvopab1 4121 cbvopab2 4122 cbvopab1s 4123 cbvopab2v 4125 unopab 4127 opabid 4306 elopab 4308 ssopab2 4326 iunopab 4332 elxpi 4695 rabxp 4716 csbxpg 4760 relopabi 4807 opabbrex 5996 dfoprab2 5999 dmoprab 6033 dfopab2 6282 cnvoprab 6327 |
| Copyright terms: Public domain | W3C validator |