ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-opab GIF version

Definition df-opab 4095
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3copab 4093 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 vz . . . . . . . 8 setvar 𝑧
65cv 1363 . . . . . . 7 class 𝑧
72cv 1363 . . . . . . . 8 class 𝑥
83cv 1363 . . . . . . . 8 class 𝑦
97, 8cop 3625 . . . . . . 7 class 𝑥, 𝑦
106, 9wceq 1364 . . . . . 6 wff 𝑧 = ⟨𝑥, 𝑦
1110, 1wa 104 . . . . 5 wff (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1211, 3wex 1506 . . . 4 wff 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1312, 2wex 1506 . . 3 wff 𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1413, 5cab 2182 . 2 class {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
154, 14wceq 1364 1 wff {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff set class
This definition is referenced by:  opabss  4097  opabbid  4098  nfopab  4101  nfopab1  4102  nfopab2  4103  cbvopab  4104  cbvopab1  4106  cbvopab2  4107  cbvopab1s  4108  cbvopab2v  4110  unopab  4112  opabid  4290  elopab  4292  ssopab2  4310  iunopab  4316  elxpi  4679  rabxp  4700  csbxpg  4744  relopabi  4791  opabbrex  5966  dfoprab2  5969  dmoprab  6003  dfopab2  6247  cnvoprab  6292
  Copyright terms: Public domain W3C validator