Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-opab | GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 4041 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1342 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1342 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1342 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 3578 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
10 | 6, 9 | wceq 1343 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
11 | 10, 1 | wa 103 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
12 | 11, 3 | wex 1480 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
13 | 12, 2 | wex 1480 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
14 | 13, 5 | cab 2151 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
15 | 4, 14 | wceq 1343 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Colors of variables: wff set class |
This definition is referenced by: opabss 4045 opabbid 4046 nfopab 4049 nfopab1 4050 nfopab2 4051 cbvopab 4052 cbvopab1 4054 cbvopab2 4055 cbvopab1s 4056 cbvopab2v 4058 unopab 4060 opabid 4234 elopab 4235 ssopab2 4252 iunopab 4258 elxpi 4619 rabxp 4640 csbxpg 4684 relopabi 4729 opabbrex 5882 dfoprab2 5885 dmoprab 5919 dfopab2 6154 cnvoprab 6198 |
Copyright terms: Public domain | W3C validator |