ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-opab GIF version

Definition df-opab 4125
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3copab 4123 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 vz . . . . . . . 8 setvar 𝑧
65cv 1374 . . . . . . 7 class 𝑧
72cv 1374 . . . . . . . 8 class 𝑥
83cv 1374 . . . . . . . 8 class 𝑦
97, 8cop 3649 . . . . . . 7 class 𝑥, 𝑦
106, 9wceq 1375 . . . . . 6 wff 𝑧 = ⟨𝑥, 𝑦
1110, 1wa 104 . . . . 5 wff (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1211, 3wex 1518 . . . 4 wff 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1312, 2wex 1518 . . 3 wff 𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1413, 5cab 2195 . 2 class {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
154, 14wceq 1375 1 wff {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff set class
This definition is referenced by:  opabss  4127  opabbid  4128  nfopab  4131  nfopab1  4132  nfopab2  4133  cbvopab  4134  cbvopab1  4136  cbvopab2  4137  cbvopab1s  4138  cbvopab2v  4140  unopab  4142  opabid  4323  elopab  4325  ssopab2  4343  iunopab  4349  elxpi  4712  rabxp  4733  csbxpg  4777  relopabi  4824  opabbrex  6019  dfoprab2  6022  dmoprab  6056  dfopab2  6305  cnvoprab  6350
  Copyright terms: Public domain W3C validator