ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12f GIF version

Theorem mpteq12f 4062
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12f ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))

Proof of Theorem mpteq12f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1529 . . . 4 𝑥𝑥 𝐴 = 𝐶
2 nfra1 2497 . . . 4 𝑥𝑥𝐴 𝐵 = 𝐷
31, 2nfan 1553 . . 3 𝑥(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷)
4 nfv 1516 . . 3 𝑦(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷)
5 rsp 2513 . . . . . . 7 (∀𝑥𝐴 𝐵 = 𝐷 → (𝑥𝐴𝐵 = 𝐷))
65imp 123 . . . . . 6 ((∀𝑥𝐴 𝐵 = 𝐷𝑥𝐴) → 𝐵 = 𝐷)
76eqeq2d 2177 . . . . 5 ((∀𝑥𝐴 𝐵 = 𝐷𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
87pm5.32da 448 . . . 4 (∀𝑥𝐴 𝐵 = 𝐷 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
9 sp 1499 . . . . . 6 (∀𝑥 𝐴 = 𝐶𝐴 = 𝐶)
109eleq2d 2236 . . . . 5 (∀𝑥 𝐴 = 𝐶 → (𝑥𝐴𝑥𝐶))
1110anbi1d 461 . . . 4 (∀𝑥 𝐴 = 𝐶 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
128, 11sylan9bbr 459 . . 3 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
133, 4, 12opabbid 4047 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
14 df-mpt 4045 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
15 df-mpt 4045 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
1613, 14, 153eqtr4g 2224 1 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341   = wceq 1343  wcel 2136  wral 2444  {copab 4042  cmpt 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-opab 4044  df-mpt 4045
This theorem is referenced by:  mpteq12dva  4063  mpteq12  4065  mpteq2ia  4068  mpteq2da  4071
  Copyright terms: Public domain W3C validator