ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv GIF version

Theorem mpteq12dv 4071
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2 (𝜑𝐴 = 𝐶)
2 mpteq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
32adantr 274 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
41, 3mpteq12dva 4070 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4051  df-mpt 4052
This theorem is referenced by:  mpteq12i  4077  offval  6068  offval3  6113  odzval  12195  restval  12585  grpinvfvalg  12745  ntrfval  12894  clsfval  12895  neifval  12934  cnpfval  12989  cnprcl2k  13000  reldvg  13442  dvfvalap  13444  eldvap  13445
  Copyright terms: Public domain W3C validator