ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv GIF version

Theorem mpteq12dv 4116
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2 (𝜑𝐴 = 𝐶)
2 mpteq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
32adantr 276 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
41, 3mpteq12dva 4115 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cmpt 4095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4096  df-mpt 4097
This theorem is referenced by:  mpteq12i  4122  offval  6147  offval3  6200  odzval  12437  restval  12949  prdsex  12973  prdsval  12977  qusval  13027  grpinvfvalg  13246  grpinvpropdg  13279  opprnegg  13717  lspfval  14022  lsppropd  14066  sraval  14071  psrval  14300  ntrfval  14444  clsfval  14445  neifval  14484  cnpfval  14539  cnprcl2k  14550  reldvg  15023  dvfvalap  15025  eldvap  15026
  Copyright terms: Public domain W3C validator