ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv GIF version

Theorem mpteq12dv 4166
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2 (𝜑𝐴 = 𝐶)
2 mpteq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
32adantr 276 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
41, 3mpteq12dva 4165 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cmpt 4145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-opab 4146  df-mpt 4147
This theorem is referenced by:  mpteq12i  4172  offval  6232  offval3  6285  ccatfvalfi  11135  swrdval  11188  odzval  12772  restval  13286  prdsex  13310  prdsval  13314  qusval  13364  grpinvfvalg  13583  grpinvpropdg  13616  opprnegg  14054  lspfval  14360  lsppropd  14404  sraval  14409  psrval  14638  ntrfval  14782  clsfval  14783  neifval  14822  cnpfval  14877  cnprcl2k  14888  reldvg  15361  dvfvalap  15363  eldvap  15364
  Copyright terms: Public domain W3C validator