![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq12dv | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | mpteq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
3 | 2 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
4 | 1, 3 | mpteq12dva 4099 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ↦ cmpt 4079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-ral 2473 df-opab 4080 df-mpt 4081 |
This theorem is referenced by: mpteq12i 4106 offval 6113 offval3 6158 odzval 12272 restval 12747 prdsex 12771 qusval 12797 grpinvfvalg 12983 grpinvpropdg 13016 opprnegg 13430 lspfval 13701 lsppropd 13745 sraval 13750 psrval 13941 ntrfval 14052 clsfval 14053 neifval 14092 cnpfval 14147 cnprcl2k 14158 reldvg 14600 dvfvalap 14602 eldvap 14603 |
Copyright terms: Public domain | W3C validator |