ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv GIF version

Theorem mpteq12dv 4115
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2 (𝜑𝐴 = 𝐶)
2 mpteq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
32adantr 276 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
41, 3mpteq12dva 4114 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cmpt 4094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4095  df-mpt 4096
This theorem is referenced by:  mpteq12i  4121  offval  6143  offval3  6191  odzval  12410  restval  12916  prdsex  12940  qusval  12966  grpinvfvalg  13174  grpinvpropdg  13207  opprnegg  13639  lspfval  13944  lsppropd  13988  sraval  13993  psrval  14220  ntrfval  14336  clsfval  14337  neifval  14376  cnpfval  14431  cnprcl2k  14442  reldvg  14915  dvfvalap  14917  eldvap  14918
  Copyright terms: Public domain W3C validator