| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | mpteq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| 4 | 1, 3 | mpteq12dva 4164 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: mpteq12i 4171 offval 6216 offval3 6269 ccatfvalfi 11113 swrdval 11166 odzval 12750 restval 13264 prdsex 13288 prdsval 13292 qusval 13342 grpinvfvalg 13561 grpinvpropdg 13594 opprnegg 14032 lspfval 14337 lsppropd 14381 sraval 14386 psrval 14615 ntrfval 14759 clsfval 14760 neifval 14799 cnpfval 14854 cnprcl2k 14865 reldvg 15338 dvfvalap 15340 eldvap 15341 |
| Copyright terms: Public domain | W3C validator |