Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq12dv | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | mpteq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
3 | 2 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
4 | 1, 3 | mpteq12dva 4070 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ↦ cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: mpteq12i 4077 offval 6068 offval3 6113 odzval 12195 restval 12585 grpinvfvalg 12745 ntrfval 12894 clsfval 12895 neifval 12934 cnpfval 12989 cnprcl2k 13000 reldvg 13442 dvfvalap 13444 eldvap 13445 |
Copyright terms: Public domain | W3C validator |