| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | mpteq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| 4 | 1, 3 | mpteq12dva 4130 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-opab 4111 df-mpt 4112 |
| This theorem is referenced by: mpteq12i 4137 offval 6176 offval3 6229 ccatfvalfi 11062 swrdval 11115 odzval 12614 restval 13127 prdsex 13151 prdsval 13155 qusval 13205 grpinvfvalg 13424 grpinvpropdg 13457 opprnegg 13895 lspfval 14200 lsppropd 14244 sraval 14249 psrval 14478 ntrfval 14622 clsfval 14623 neifval 14662 cnpfval 14717 cnprcl2k 14728 reldvg 15201 dvfvalap 15203 eldvap 15204 |
| Copyright terms: Public domain | W3C validator |