| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq12dv | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | mpteq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| 4 | 1, 3 | mpteq12dva 4115 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: mpteq12i 4122 offval 6147 offval3 6200 odzval 12437 restval 12949 prdsex 12973 prdsval 12977 qusval 13027 grpinvfvalg 13246 grpinvpropdg 13279 opprnegg 13717 lspfval 14022 lsppropd 14066 sraval 14071 psrval 14300 ntrfval 14444 clsfval 14445 neifval 14484 cnpfval 14539 cnprcl2k 14550 reldvg 15023 dvfvalap 15025 eldvap 15026 |
| Copyright terms: Public domain | W3C validator |