| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version | ||
| Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmsn0 | ⊢ dom {∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4721 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | dmsnm 5167 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 3 | 1, 2 | mtbi 672 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} |
| 4 | alnex 1523 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 5 | 3, 4 | mpbir 146 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} |
| 6 | eq0 3487 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
| 7 | 5, 6 | mpbir 146 | 1 ⊢ dom {∅} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 ∅c0 3468 {csn 3643 × cxp 4691 dom cdm 4693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-dm 4703 |
| This theorem is referenced by: cnvsn0 5170 1st0 6253 2nd0 6254 |
| Copyright terms: Public domain | W3C validator |