Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version |
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
dmsn0 | ⊢ dom {∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4632 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
2 | dmsnm 5069 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
3 | 1, 2 | mtbi 660 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} |
4 | alnex 1487 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
5 | 3, 4 | mpbir 145 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} |
6 | eq0 3427 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
7 | 5, 6 | mpbir 145 | 1 ⊢ dom {∅} = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 {csn 3576 × cxp 4602 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-dm 4614 |
This theorem is referenced by: cnvsn0 5072 1st0 6112 2nd0 6113 |
Copyright terms: Public domain | W3C validator |