ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 GIF version

Theorem dmsn0 5096
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0 dom {∅} = ∅

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4654 . . . 4 ¬ ∅ ∈ (V × V)
2 dmsnm 5094 . . . 4 (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅})
31, 2mtbi 670 . . 3 ¬ ∃𝑥 𝑥 ∈ dom {∅}
4 alnex 1499 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅})
53, 4mpbir 146 . 2 𝑥 ¬ 𝑥 ∈ dom {∅}
6 eq0 3441 . 2 (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅})
75, 6mpbir 146 1 dom {∅} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1351   = wceq 1353  wex 1492  wcel 2148  Vcvv 2737  c0 3422  {csn 3592   × cxp 4624  dom cdm 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-xp 4632  df-dm 4636
This theorem is referenced by:  cnvsn0  5097  1st0  6144  2nd0  6145
  Copyright terms: Public domain W3C validator