| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version | ||
| Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmsn0 | ⊢ dom {∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4702 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | dmsnm 5147 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 3 | 1, 2 | mtbi 671 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} |
| 4 | alnex 1521 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 5 | 3, 4 | mpbir 146 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} |
| 6 | eq0 3478 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
| 7 | 5, 6 | mpbir 146 | 1 ⊢ dom {∅} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 ∅c0 3459 {csn 3632 × cxp 4672 dom cdm 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-dm 4684 |
| This theorem is referenced by: cnvsn0 5150 1st0 6229 2nd0 6230 |
| Copyright terms: Public domain | W3C validator |