| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version | ||
| Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmsn0 | ⊢ dom {∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4692 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | dmsnm 5136 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 3 | 1, 2 | mtbi 671 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} |
| 4 | alnex 1513 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 5 | 3, 4 | mpbir 146 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} |
| 6 | eq0 3470 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
| 7 | 5, 6 | mpbir 146 | 1 ⊢ dom {∅} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ∅c0 3451 {csn 3623 × cxp 4662 dom cdm 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-dm 4674 |
| This theorem is referenced by: cnvsn0 5139 1st0 6211 2nd0 6212 |
| Copyright terms: Public domain | W3C validator |