ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 GIF version

Theorem dmsn0 5195
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0 dom {∅} = ∅

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4746 . . . 4 ¬ ∅ ∈ (V × V)
2 dmsnm 5193 . . . 4 (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅})
31, 2mtbi 674 . . 3 ¬ ∃𝑥 𝑥 ∈ dom {∅}
4 alnex 1545 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅})
53, 4mpbir 146 . 2 𝑥 ¬ 𝑥 ∈ dom {∅}
6 eq0 3510 . 2 (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅})
75, 6mpbir 146 1 dom {∅} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1393   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  c0 3491  {csn 3666   × cxp 4716  dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-dm 4728
This theorem is referenced by:  cnvsn0  5196  1st0  6288  2nd0  6289
  Copyright terms: Public domain W3C validator