ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 GIF version

Theorem dmsn0 4852
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0 dom {∅} = ∅

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4428 . . . 4 ¬ ∅ ∈ (V × V)
2 dmsnm 4850 . . . 4 (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅})
31, 2mtbi 628 . . 3 ¬ ∃𝑥 𝑥 ∈ dom {∅}
4 alnex 1429 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅})
53, 4mpbir 144 . 2 𝑥 ¬ 𝑥 ∈ dom {∅}
6 eq0 3284 . 2 (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅})
75, 6mpbir 144 1 dom {∅} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1283   = wceq 1285  wex 1422  wcel 1434  Vcvv 2612  c0 3269  {csn 3422   × cxp 4399  dom cdm 4401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-xp 4407  df-dm 4411
This theorem is referenced by:  cnvsn0  4853  1st0  5850  2nd0  5851
  Copyright terms: Public domain W3C validator