Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version |
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
dmsn0 | ⊢ dom {∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4611 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
2 | dmsnm 5048 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
3 | 1, 2 | mtbi 660 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} |
4 | alnex 1479 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
5 | 3, 4 | mpbir 145 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} |
6 | eq0 3412 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
7 | 5, 6 | mpbir 145 | 1 ⊢ dom {∅} = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1333 = wceq 1335 ∃wex 1472 ∈ wcel 2128 Vcvv 2712 ∅c0 3394 {csn 3560 × cxp 4581 dom cdm 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4589 df-dm 4593 |
This theorem is referenced by: cnvsn0 5051 1st0 6086 2nd0 6087 |
Copyright terms: Public domain | W3C validator |