| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmsn0 | GIF version | ||
| Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| dmsn0 | ⊢ dom {∅} = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nelxp 4691 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | dmsnm 5135 | . . . 4 ⊢ (∅ ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 3 | 1, 2 | mtbi 671 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ dom {∅} | 
| 4 | alnex 1513 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom {∅} ↔ ¬ ∃𝑥 𝑥 ∈ dom {∅}) | |
| 5 | 3, 4 | mpbir 146 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ dom {∅} | 
| 6 | eq0 3469 | . 2 ⊢ (dom {∅} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom {∅}) | |
| 7 | 5, 6 | mpbir 146 | 1 ⊢ dom {∅} = ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ∅c0 3450 {csn 3622 × cxp 4661 dom cdm 4663 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-dm 4673 | 
| This theorem is referenced by: cnvsn0 5138 1st0 6202 2nd0 6203 | 
| Copyright terms: Public domain | W3C validator |