Step | Hyp | Ref
| Expression |
1 | | onsucelsucexmidlem1 4512 |
. . . 4
⊢ ∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)} |
2 | | 0elon 4377 |
. . . . . 6
⊢ ∅
∈ On |
3 | | onsucelsucexmidlem 4513 |
. . . . . 6
⊢ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ∈
On |
4 | 2, 3 | pm3.2i 270 |
. . . . 5
⊢ (∅
∈ On ∧ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∈ On) |
5 | | onsucelsucexmid.1 |
. . . . 5
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦) |
6 | | eleq1 2233 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) |
7 | | suceq 4387 |
. . . . . . . 8
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
8 | 7 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑥 = ∅ → (suc 𝑥 ∈ suc 𝑦 ↔ suc ∅ ∈ suc 𝑦)) |
9 | 6, 8 | imbi12d 233 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦) ↔ (∅ ∈ 𝑦 → suc ∅ ∈ suc 𝑦))) |
10 | | eleq2 2234 |
. . . . . . 7
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → (∅ ∈ 𝑦 ↔ ∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)})) |
11 | | suceq 4387 |
. . . . . . . 8
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → suc 𝑦 = suc {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) |
12 | 11 | eleq2d 2240 |
. . . . . . 7
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → (suc ∅ ∈ suc 𝑦 ↔ suc ∅ ∈ suc
{𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)})) |
13 | 10, 12 | imbi12d 233 |
. . . . . 6
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ((∅ ∈ 𝑦 → suc ∅ ∈ suc
𝑦) ↔ (∅ ∈
{𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)} → suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}))) |
14 | 9, 13 | rspc2va 2848 |
. . . . 5
⊢
(((∅ ∈ On ∧ {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → suc ∅ ∈ suc {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)})) |
15 | 4, 5, 14 | mp2an 424 |
. . . 4
⊢ (∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)} → suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) |
16 | 1, 15 | ax-mp 5 |
. . 3
⊢ suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} |
17 | | elsuci 4388 |
. . 3
⊢ (suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → (suc ∅ ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ∨ suc ∅ = {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)})) |
18 | 16, 17 | ax-mp 5 |
. 2
⊢ (suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∨ suc ∅ = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) |
19 | | suc0 4396 |
. . . . . 6
⊢ suc
∅ = {∅} |
20 | | p0ex 4174 |
. . . . . . 7
⊢ {∅}
∈ V |
21 | 20 | prid2 3690 |
. . . . . 6
⊢ {∅}
∈ {∅, {∅}} |
22 | 19, 21 | eqeltri 2243 |
. . . . 5
⊢ suc
∅ ∈ {∅, {∅}} |
23 | | eqeq1 2177 |
. . . . . . 7
⊢ (𝑧 = suc ∅ → (𝑧 = ∅ ↔ suc ∅ =
∅)) |
24 | 23 | orbi1d 786 |
. . . . . 6
⊢ (𝑧 = suc ∅ → ((𝑧 = ∅ ∨ 𝜑) ↔ (suc ∅ = ∅ ∨ 𝜑))) |
25 | 24 | elrab3 2887 |
. . . . 5
⊢ (suc
∅ ∈ {∅, {∅}} → (suc ∅ ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ↔ (suc ∅ =
∅ ∨ 𝜑))) |
26 | 22, 25 | ax-mp 5 |
. . . 4
⊢ (suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ↔ (suc ∅ = ∅ ∨ 𝜑)) |
27 | | 0ex 4116 |
. . . . . . 7
⊢ ∅
∈ V |
28 | | nsuceq0g 4403 |
. . . . . . 7
⊢ (∅
∈ V → suc ∅ ≠ ∅) |
29 | 27, 28 | ax-mp 5 |
. . . . . 6
⊢ suc
∅ ≠ ∅ |
30 | | df-ne 2341 |
. . . . . 6
⊢ (suc
∅ ≠ ∅ ↔ ¬ suc ∅ = ∅) |
31 | 29, 30 | mpbi 144 |
. . . . 5
⊢ ¬
suc ∅ = ∅ |
32 | | pm2.53 717 |
. . . . 5
⊢ ((suc
∅ = ∅ ∨ 𝜑)
→ (¬ suc ∅ = ∅ → 𝜑)) |
33 | 31, 32 | mpi 15 |
. . . 4
⊢ ((suc
∅ = ∅ ∨ 𝜑)
→ 𝜑) |
34 | 26, 33 | sylbi 120 |
. . 3
⊢ (suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → 𝜑) |
35 | 19 | eqeq1i 2178 |
. . . . 5
⊢ (suc
∅ = {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ↔ {∅} = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) |
36 | 19 | eqeq1i 2178 |
. . . . . . . 8
⊢ (suc
∅ = ∅ ↔ {∅} = ∅) |
37 | 31, 36 | mtbi 665 |
. . . . . . 7
⊢ ¬
{∅} = ∅ |
38 | 20 | elsn 3599 |
. . . . . . 7
⊢
({∅} ∈ {∅} ↔ {∅} = ∅) |
39 | 37, 38 | mtbir 666 |
. . . . . 6
⊢ ¬
{∅} ∈ {∅} |
40 | | eleq2 2234 |
. . . . . 6
⊢
({∅} = {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ({∅} ∈ {∅} ↔
{∅} ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)})) |
41 | 39, 40 | mtbii 669 |
. . . . 5
⊢
({∅} = {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ¬ {∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)}) |
42 | 35, 41 | sylbi 120 |
. . . 4
⊢ (suc
∅ = {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ¬ {∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)}) |
43 | | olc 706 |
. . . . 5
⊢ (𝜑 → ({∅} = ∅ ∨
𝜑)) |
44 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑧 = {∅} → (𝑧 = ∅ ↔ {∅} =
∅)) |
45 | 44 | orbi1d 786 |
. . . . . . 7
⊢ (𝑧 = {∅} → ((𝑧 = ∅ ∨ 𝜑) ↔ ({∅} = ∅ ∨ 𝜑))) |
46 | 45 | elrab3 2887 |
. . . . . 6
⊢
({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ↔ ({∅} =
∅ ∨ 𝜑))) |
47 | 21, 46 | ax-mp 5 |
. . . . 5
⊢
({∅} ∈ {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑)) |
48 | 43, 47 | sylibr 133 |
. . . 4
⊢ (𝜑 → {∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)}) |
49 | 42, 48 | nsyl 623 |
. . 3
⊢ (suc
∅ = {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ¬ 𝜑) |
50 | 34, 49 | orim12i 754 |
. 2
⊢ ((suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∨ suc ∅ = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) → (𝜑 ∨ ¬ 𝜑)) |
51 | 18, 50 | ax-mp 5 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |