| Step | Hyp | Ref
 | Expression | 
| 1 |   | onsucelsucexmidlem1 4564 | 
. . . 4
⊢ ∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)} | 
| 2 |   | 0elon 4427 | 
. . . . . 6
⊢ ∅
∈ On | 
| 3 |   | onsucelsucexmidlem 4565 | 
. . . . . 6
⊢ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ∈
On | 
| 4 | 2, 3 | pm3.2i 272 | 
. . . . 5
⊢ (∅
∈ On ∧ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∈ On) | 
| 5 |   | onsucelsucexmid.1 | 
. . . . 5
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦) | 
| 6 |   | eleq1 2259 | 
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | 
| 7 |   | suceq 4437 | 
. . . . . . . 8
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) | 
| 8 | 7 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = ∅ → (suc 𝑥 ∈ suc 𝑦 ↔ suc ∅ ∈ suc 𝑦)) | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦) ↔ (∅ ∈ 𝑦 → suc ∅ ∈ suc 𝑦))) | 
| 10 |   | eleq2 2260 | 
. . . . . . 7
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → (∅ ∈ 𝑦 ↔ ∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)})) | 
| 11 |   | suceq 4437 | 
. . . . . . . 8
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → suc 𝑦 = suc {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) | 
| 12 | 11 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → (suc ∅ ∈ suc 𝑦 ↔ suc ∅ ∈ suc
{𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)})) | 
| 13 | 10, 12 | imbi12d 234 | 
. . . . . 6
⊢ (𝑦 = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ((∅ ∈ 𝑦 → suc ∅ ∈ suc
𝑦) ↔ (∅ ∈
{𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)} → suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}))) | 
| 14 | 9, 13 | rspc2va 2882 | 
. . . . 5
⊢
(((∅ ∈ On ∧ {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → suc ∅ ∈ suc {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)})) | 
| 15 | 4, 5, 14 | mp2an 426 | 
. . . 4
⊢ (∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ (𝑧 =
∅ ∨ 𝜑)} → suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) | 
| 16 | 1, 15 | ax-mp 5 | 
. . 3
⊢ suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} | 
| 17 |   | elsuci 4438 | 
. . 3
⊢ (suc
∅ ∈ suc {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → (suc ∅ ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ∨ suc ∅ = {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)})) | 
| 18 | 16, 17 | ax-mp 5 | 
. 2
⊢ (suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∨ suc ∅ = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) | 
| 19 |   | suc0 4446 | 
. . . . . 6
⊢ suc
∅ = {∅} | 
| 20 |   | p0ex 4221 | 
. . . . . . 7
⊢ {∅}
∈ V | 
| 21 | 20 | prid2 3729 | 
. . . . . 6
⊢ {∅}
∈ {∅, {∅}} | 
| 22 | 19, 21 | eqeltri 2269 | 
. . . . 5
⊢ suc
∅ ∈ {∅, {∅}} | 
| 23 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑧 = suc ∅ → (𝑧 = ∅ ↔ suc ∅ =
∅)) | 
| 24 | 23 | orbi1d 792 | 
. . . . . 6
⊢ (𝑧 = suc ∅ → ((𝑧 = ∅ ∨ 𝜑) ↔ (suc ∅ = ∅ ∨ 𝜑))) | 
| 25 | 24 | elrab3 2921 | 
. . . . 5
⊢ (suc
∅ ∈ {∅, {∅}} → (suc ∅ ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ↔ (suc ∅ =
∅ ∨ 𝜑))) | 
| 26 | 22, 25 | ax-mp 5 | 
. . . 4
⊢ (suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ↔ (suc ∅ = ∅ ∨ 𝜑)) | 
| 27 |   | 0ex 4160 | 
. . . . . . 7
⊢ ∅
∈ V | 
| 28 |   | nsuceq0g 4453 | 
. . . . . . 7
⊢ (∅
∈ V → suc ∅ ≠ ∅) | 
| 29 | 27, 28 | ax-mp 5 | 
. . . . . 6
⊢ suc
∅ ≠ ∅ | 
| 30 |   | df-ne 2368 | 
. . . . . 6
⊢ (suc
∅ ≠ ∅ ↔ ¬ suc ∅ = ∅) | 
| 31 | 29, 30 | mpbi 145 | 
. . . . 5
⊢  ¬
suc ∅ = ∅ | 
| 32 |   | pm2.53 723 | 
. . . . 5
⊢ ((suc
∅ = ∅ ∨ 𝜑)
→ (¬ suc ∅ = ∅ → 𝜑)) | 
| 33 | 31, 32 | mpi 15 | 
. . . 4
⊢ ((suc
∅ = ∅ ∨ 𝜑)
→ 𝜑) | 
| 34 | 26, 33 | sylbi 121 | 
. . 3
⊢ (suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → 𝜑) | 
| 35 | 19 | eqeq1i 2204 | 
. . . . 5
⊢ (suc
∅ = {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ↔ {∅} = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) | 
| 36 | 19 | eqeq1i 2204 | 
. . . . . . . 8
⊢ (suc
∅ = ∅ ↔ {∅} = ∅) | 
| 37 | 31, 36 | mtbi 671 | 
. . . . . . 7
⊢  ¬
{∅} = ∅ | 
| 38 | 20 | elsn 3638 | 
. . . . . . 7
⊢
({∅} ∈ {∅} ↔ {∅} = ∅) | 
| 39 | 37, 38 | mtbir 672 | 
. . . . . 6
⊢  ¬
{∅} ∈ {∅} | 
| 40 |   | eleq2 2260 | 
. . . . . 6
⊢
({∅} = {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ({∅} ∈ {∅} ↔
{∅} ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)})) | 
| 41 | 39, 40 | mtbii 675 | 
. . . . 5
⊢
({∅} = {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ¬ {∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)}) | 
| 42 | 35, 41 | sylbi 121 | 
. . . 4
⊢ (suc
∅ = {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ¬ {∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)}) | 
| 43 |   | olc 712 | 
. . . . 5
⊢ (𝜑 → ({∅} = ∅ ∨
𝜑)) | 
| 44 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑧 = {∅} → (𝑧 = ∅ ↔ {∅} =
∅)) | 
| 45 | 44 | orbi1d 792 | 
. . . . . . 7
⊢ (𝑧 = {∅} → ((𝑧 = ∅ ∨ 𝜑) ↔ ({∅} = ∅ ∨ 𝜑))) | 
| 46 | 45 | elrab3 2921 | 
. . . . . 6
⊢
({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)} ↔ ({∅} =
∅ ∨ 𝜑))) | 
| 47 | 21, 46 | ax-mp 5 | 
. . . . 5
⊢
({∅} ∈ {𝑧
∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑)) | 
| 48 | 43, 47 | sylibr 134 | 
. . . 4
⊢ (𝜑 → {∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ (𝑧 = ∅ ∨
𝜑)}) | 
| 49 | 42, 48 | nsyl 629 | 
. . 3
⊢ (suc
∅ = {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} → ¬ 𝜑) | 
| 50 | 34, 49 | orim12i 760 | 
. 2
⊢ ((suc
∅ ∈ {𝑧 ∈
{∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)} ∨ suc ∅ = {𝑧 ∈ {∅, {∅}} ∣ (𝑧 = ∅ ∨ 𝜑)}) → (𝜑 ∨ ¬ 𝜑)) | 
| 51 | 18, 50 | ax-mp 5 | 
1
⊢ (𝜑 ∨ ¬ 𝜑) |