| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndvdsi | GIF version | ||
| Description: A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| ndvdsi.1 | ⊢ 𝐴 ∈ ℕ |
| ndvdsi.2 | ⊢ 𝑄 ∈ ℕ0 |
| ndvdsi.3 | ⊢ 𝑅 ∈ ℕ |
| ndvdsi.4 | ⊢ ((𝐴 · 𝑄) + 𝑅) = 𝐵 |
| ndvdsi.5 | ⊢ 𝑅 < 𝐴 |
| Ref | Expression |
|---|---|
| ndvdsi | ⊢ ¬ 𝐴 ∥ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndvdsi.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 2 | 1 | nnzi 9400 | . . . 4 ⊢ 𝐴 ∈ ℤ |
| 3 | ndvdsi.2 | . . . . 5 ⊢ 𝑄 ∈ ℕ0 | |
| 4 | 3 | nn0zi 9401 | . . . 4 ⊢ 𝑄 ∈ ℤ |
| 5 | dvdsmul1 12168 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝑄)) | |
| 6 | 2, 4, 5 | mp2an 426 | . . 3 ⊢ 𝐴 ∥ (𝐴 · 𝑄) |
| 7 | zmulcl 9433 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝐴 · 𝑄) ∈ ℤ) | |
| 8 | 2, 4, 7 | mp2an 426 | . . . 4 ⊢ (𝐴 · 𝑄) ∈ ℤ |
| 9 | ndvdsi.3 | . . . . 5 ⊢ 𝑅 ∈ ℕ | |
| 10 | ndvdsi.5 | . . . . 5 ⊢ 𝑅 < 𝐴 | |
| 11 | 9, 10 | pm3.2i 272 | . . . 4 ⊢ (𝑅 ∈ ℕ ∧ 𝑅 < 𝐴) |
| 12 | ndvdsadd 12286 | . . . 4 ⊢ (((𝐴 · 𝑄) ∈ ℤ ∧ 𝐴 ∈ ℕ ∧ (𝑅 ∈ ℕ ∧ 𝑅 < 𝐴)) → (𝐴 ∥ (𝐴 · 𝑄) → ¬ 𝐴 ∥ ((𝐴 · 𝑄) + 𝑅))) | |
| 13 | 8, 1, 11, 12 | mp3an 1350 | . . 3 ⊢ (𝐴 ∥ (𝐴 · 𝑄) → ¬ 𝐴 ∥ ((𝐴 · 𝑄) + 𝑅)) |
| 14 | 6, 13 | ax-mp 5 | . 2 ⊢ ¬ 𝐴 ∥ ((𝐴 · 𝑄) + 𝑅) |
| 15 | ndvdsi.4 | . . 3 ⊢ ((𝐴 · 𝑄) + 𝑅) = 𝐵 | |
| 16 | 15 | breq2i 4055 | . 2 ⊢ (𝐴 ∥ ((𝐴 · 𝑄) + 𝑅) ↔ 𝐴 ∥ 𝐵) |
| 17 | 14, 16 | mtbi 672 | 1 ⊢ ¬ 𝐴 ∥ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 + caddc 7935 · cmul 7937 < clt 8114 ℕcn 9043 ℕ0cn0 9302 ℤcz 9379 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 |
| This theorem is referenced by: 5ndvds3 12289 5ndvds6 12290 dec5dvds 12779 |
| Copyright terms: Public domain | W3C validator |