ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3 GIF version

Theorem nntri3 6476
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
Assertion
Ref Expression
nntri3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))

Proof of Theorem nntri3
StepHypRef Expression
1 elirr 4525 . . . . . 6 ¬ 𝐴𝐴
2 eleq2 2234 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 669 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 622 . . . 4 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
54adantl 275 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
6 simpl 108 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
76con2i 622 . . . 4 (𝐴𝐵 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
87adantl 275 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
95, 82falsed 697 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
10 simpr 109 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
11 eleq1 2233 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
121, 11mtbii 669 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
133, 12jca 304 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1413adantl 275 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1510, 142thd 174 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
1612con2i 622 . . . 4 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1716adantl 275 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ 𝐴 = 𝐵)
18 simpr 109 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
1918con2i 622 . . . 4 (𝐵𝐴 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2019adantl 275 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2117, 202falsed 697 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
22 nntri3or 6472 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
239, 15, 21, 22mpjao3dan 1302 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575
This theorem is referenced by:  frec2uzf1od  10362  nnti  14027
  Copyright terms: Public domain W3C validator