ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3 GIF version

Theorem nntri3 6601
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
Assertion
Ref Expression
nntri3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))

Proof of Theorem nntri3
StepHypRef Expression
1 elirr 4602 . . . . . 6 ¬ 𝐴𝐴
2 eleq2 2270 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 676 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 628 . . . 4 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
54adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
6 simpl 109 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
76con2i 628 . . . 4 (𝐴𝐵 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
87adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
95, 82falsed 704 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
10 simpr 110 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
11 eleq1 2269 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
121, 11mtbii 676 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
133, 12jca 306 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1413adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1510, 142thd 175 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
1612con2i 628 . . . 4 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1716adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ 𝐴 = 𝐵)
18 simpr 110 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
1918con2i 628 . . . 4 (𝐵𝐴 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2019adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2117, 202falsed 704 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
22 nntri3or 6597 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
239, 15, 21, 22mpjao3dan 1320 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  ωcom 4651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-int 3895  df-tr 4154  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652
This theorem is referenced by:  frec2uzf1od  10583  nnti  16099
  Copyright terms: Public domain W3C validator