ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3 GIF version

Theorem nntri3 6583
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
Assertion
Ref Expression
nntri3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))

Proof of Theorem nntri3
StepHypRef Expression
1 elirr 4589 . . . . . 6 ¬ 𝐴𝐴
2 eleq2 2269 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 676 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 628 . . . 4 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
54adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
6 simpl 109 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
76con2i 628 . . . 4 (𝐴𝐵 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
87adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
95, 82falsed 704 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
10 simpr 110 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
11 eleq1 2268 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
121, 11mtbii 676 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
133, 12jca 306 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1413adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1510, 142thd 175 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
1612con2i 628 . . . 4 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1716adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ 𝐴 = 𝐵)
18 simpr 110 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
1918con2i 628 . . . 4 (𝐵𝐴 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2019adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2117, 202falsed 704 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
22 nntri3or 6579 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
239, 15, 21, 22mpjao3dan 1320 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  ωcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639
This theorem is referenced by:  frec2uzf1od  10551  nnti  15929
  Copyright terms: Public domain W3C validator