ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3 GIF version

Theorem nntri3 6555
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
Assertion
Ref Expression
nntri3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))

Proof of Theorem nntri3
StepHypRef Expression
1 elirr 4577 . . . . . 6 ¬ 𝐴𝐴
2 eleq2 2260 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 675 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 628 . . . 4 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
54adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
6 simpl 109 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
76con2i 628 . . . 4 (𝐴𝐵 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
87adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
95, 82falsed 703 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
10 simpr 110 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
11 eleq1 2259 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐴𝐵𝐴))
121, 11mtbii 675 . . . . 5 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
133, 12jca 306 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1413adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
1510, 142thd 175 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
1612con2i 628 . . . 4 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1716adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ 𝐴 = 𝐵)
18 simpr 110 . . . . 5 ((¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴) → ¬ 𝐵𝐴)
1918con2i 628 . . . 4 (𝐵𝐴 → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2019adantl 277 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → ¬ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴))
2117, 202falsed 703 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
22 nntri3or 6551 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
239, 15, 21, 22mpjao3dan 1318 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  frec2uzf1od  10498  nnti  15639
  Copyright terms: Public domain W3C validator