ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 GIF version

Theorem fprodm1 11763
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprodm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fprodm1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodm1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 10179 . . . . 5 ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1))
2 fprodm1.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 9610 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 9449 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
6 1cnd 8042 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
75, 6npcand 8341 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
87eleq1d 2265 . . . . 5 (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1))))
91, 8mtbii 675 . . . 4 (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
10 disjsn 3684 . . . 4 (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
119, 10sylibr 134 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 9606 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
132, 12syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
14 peano2zm 9364 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 14 . . . . . 6 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 9449 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1716, 6npcand 8341 . . . . . . . 8 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
1817fveq2d 5562 . . . . . . 7 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
192, 18eleqtrrd 2276 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
20 eluzp1m1 9625 . . . . . 6 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2115, 19, 20syl2anc 411 . . . . 5 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
22 fzsuc2 10154 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2313, 21, 22syl2anc 411 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
247oveq2d 5938 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
257sneqd 3635 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2625uneq2d 3317 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2723, 24, 263eqtr3d 2237 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2813, 4fzfigd 10523 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
29 elfzelz 10100 . . . . . 6 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3029adantl 277 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
3113adantr 276 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
324adantr 276 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
33 peano2zm 9364 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3432, 33syl 14 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑁 − 1) ∈ ℤ)
35 fzdcel 10115 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
3630, 31, 34, 35syl3anc 1249 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
3736ralrimiva 2570 . . 3 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
38 fprodm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3911, 27, 28, 37, 38fprodsplitdc 11761 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴))
40 fprodm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
4140eleq1d 2265 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
4238ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
43 eluzfz2 10107 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
442, 43syl 14 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
4541, 42, 44rspcdva 2873 . . . 4 (𝜑𝐵 ∈ ℂ)
4640prodsn 11758 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
472, 45, 46syl2anc 411 . . 3 (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
4847oveq2d 5938 . 2 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
4939, 48eqtrd 2229 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  cun 3155  cin 3156  c0 3450  {csn 3622  cfv 5258  (class class class)co 5922  cc 7877  1c1 7880   + caddc 7882   · cmul 7884  cmin 8197  cz 9326  cuz 9601  ...cfz 10083  cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  fprodp1  11765  fprodm1s  11766
  Copyright terms: Public domain W3C validator