ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 GIF version

Theorem fprodm1 11609
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprodm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fprodm1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodm1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 10107 . . . . 5 ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1))
2 fprodm1.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 9540 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 9379 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
6 1cnd 7976 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
75, 6npcand 8275 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
87eleq1d 2246 . . . . 5 (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1))))
91, 8mtbii 674 . . . 4 (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
10 disjsn 3656 . . . 4 (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
119, 10sylibr 134 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 9536 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
132, 12syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
14 peano2zm 9294 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 14 . . . . . 6 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 9379 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1716, 6npcand 8275 . . . . . . . 8 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
1817fveq2d 5521 . . . . . . 7 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
192, 18eleqtrrd 2257 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
20 eluzp1m1 9554 . . . . . 6 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2115, 19, 20syl2anc 411 . . . . 5 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
22 fzsuc2 10082 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2313, 21, 22syl2anc 411 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
247oveq2d 5894 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
257sneqd 3607 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2625uneq2d 3291 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2723, 24, 263eqtr3d 2218 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2813, 4fzfigd 10434 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
29 elfzelz 10028 . . . . . 6 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3029adantl 277 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
3113adantr 276 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
324adantr 276 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
33 peano2zm 9294 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3432, 33syl 14 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑁 − 1) ∈ ℤ)
35 fzdcel 10043 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
3630, 31, 34, 35syl3anc 1238 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
3736ralrimiva 2550 . . 3 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
38 fprodm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3911, 27, 28, 37, 38fprodsplitdc 11607 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴))
40 fprodm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
4140eleq1d 2246 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
4238ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
43 eluzfz2 10035 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
442, 43syl 14 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
4541, 42, 44rspcdva 2848 . . . 4 (𝜑𝐵 ∈ ℂ)
4640prodsn 11604 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
472, 45, 46syl2anc 411 . . 3 (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
4847oveq2d 5894 . 2 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
4939, 48eqtrd 2210 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 834   = wceq 1353  wcel 2148  cun 3129  cin 3130  c0 3424  {csn 3594  cfv 5218  (class class class)co 5878  cc 7812  1c1 7815   + caddc 7817   · cmul 7819  cmin 8131  cz 9256  cuz 9531  ...cfz 10011  cprod 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-proddc 11562
This theorem is referenced by:  fprodp1  11611  fprodm1s  11612
  Copyright terms: Public domain W3C validator