ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodm1 GIF version

Theorem fprodm1 12104
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprodm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fprodm1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodm1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzp1nel 10296 . . . . 5 ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1))
2 fprodm1.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 9727 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 9566 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
6 1cnd 8158 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
75, 6npcand 8457 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
87eleq1d 2298 . . . . 5 (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1))))
91, 8mtbii 678 . . . 4 (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
10 disjsn 3728 . . . 4 (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
119, 10sylibr 134 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 9723 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
132, 12syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
14 peano2zm 9480 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 14 . . . . . 6 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 9566 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1716, 6npcand 8457 . . . . . . . 8 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
1817fveq2d 5630 . . . . . . 7 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
192, 18eleqtrrd 2309 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
20 eluzp1m1 9742 . . . . . 6 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2115, 19, 20syl2anc 411 . . . . 5 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
22 fzsuc2 10271 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2313, 21, 22syl2anc 411 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
247oveq2d 6016 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
257sneqd 3679 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2625uneq2d 3358 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2723, 24, 263eqtr3d 2270 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2813, 4fzfigd 10648 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
29 elfzelz 10217 . . . . . 6 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3029adantl 277 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
3113adantr 276 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
324adantr 276 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
33 peano2zm 9480 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
3432, 33syl 14 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑁 − 1) ∈ ℤ)
35 fzdcel 10232 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
3630, 31, 34, 35syl3anc 1271 . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
3736ralrimiva 2603 . . 3 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)DECID 𝑗 ∈ (𝑀...(𝑁 − 1)))
38 fprodm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3911, 27, 28, 37, 38fprodsplitdc 12102 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴))
40 fprodm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
4140eleq1d 2298 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
4238ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
43 eluzfz2 10224 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
442, 43syl 14 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
4541, 42, 44rspcdva 2912 . . . 4 (𝜑𝐵 ∈ ℂ)
4640prodsn 12099 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
472, 45, 46syl2anc 411 . . 3 (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
4847oveq2d 6016 . 2 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
4939, 48eqtrd 2262 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  cun 3195  cin 3196  c0 3491  {csn 3666  cfv 5317  (class class class)co 6000  cc 7993  1c1 7996   + caddc 7998   · cmul 8000  cmin 8313  cz 9442  cuz 9718  ...cfz 10200  cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by:  fprodp1  12106  fprodm1s  12107
  Copyright terms: Public domain W3C validator