![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inffiexmid | GIF version |
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.) |
Ref | Expression |
---|---|
inffiexmid.1 | ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) |
Ref | Expression |
---|---|
inffiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4625 | . . . . 5 ⊢ ω ∈ V | |
2 | 1 | rabex 4173 | . . . 4 ⊢ {𝑦 ∈ ω ∣ 𝜑} ∈ V |
3 | eleq1 2256 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)) | |
4 | breq2 4033 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑})) | |
5 | 3, 4 | orbi12d 794 | . . . 4 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))) |
6 | inffiexmid.1 | . . . 4 ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) | |
7 | 2, 5, 6 | vtocl 2814 | . . 3 ⊢ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) |
8 | ominf 6952 | . . . . . 6 ⊢ ¬ ω ∈ Fin | |
9 | peano1 4626 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
10 | elex2 2776 | . . . . . . . . . 10 ⊢ (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃𝑤 𝑤 ∈ ω |
12 | r19.3rmv 3537 | . . . . . . . . 9 ⊢ (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)) | |
13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (𝜑 ↔ ∀𝑦 ∈ ω 𝜑) |
14 | rabid2 2671 | . . . . . . . 8 ⊢ (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑) | |
15 | 13, 14 | sylbb2 138 | . . . . . . 7 ⊢ (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑}) |
16 | 15 | eleq1d 2262 | . . . . . 6 ⊢ (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)) |
17 | 8, 16 | mtbii 675 | . . . . 5 ⊢ (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin) |
18 | 17 | con2i 628 | . . . 4 ⊢ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑) |
19 | infm 6960 | . . . . 5 ⊢ (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑}) | |
20 | biidd 172 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜑)) | |
21 | 20 | elrab 2916 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑)) |
22 | 21 | simprbi 275 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
23 | 22 | exlimiv 1609 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
24 | 19, 23 | syl 14 | . . . 4 ⊢ (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
25 | 18, 24 | orim12i 760 | . . 3 ⊢ (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑 ∨ 𝜑)) |
26 | 7, 25 | ax-mp 5 | . 2 ⊢ (¬ 𝜑 ∨ 𝜑) |
27 | orcom 729 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) | |
28 | 26, 27 | mpbi 145 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 {crab 2476 ∅c0 3446 class class class wbr 4029 ωcom 4622 ≼ cdom 6793 Fincfn 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |