ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffiexmid GIF version

Theorem inffiexmid 7018
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
Hypothesis
Ref Expression
inffiexmid.1 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
Assertion
Ref Expression
inffiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem inffiexmid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4649 . . . . 5 ω ∈ V
21rabex 4196 . . . 4 {𝑦 ∈ ω ∣ 𝜑} ∈ V
3 eleq1 2269 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
4 breq2 4055 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))
53, 4orbi12d 795 . . . 4 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})))
6 inffiexmid.1 . . . 4 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
72, 5, 6vtocl 2829 . . 3 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})
8 ominf 7008 . . . . . 6 ¬ ω ∈ Fin
9 peano1 4650 . . . . . . . . . 10 ∅ ∈ ω
10 elex2 2790 . . . . . . . . . 10 (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω)
119, 10ax-mp 5 . . . . . . . . 9 𝑤 𝑤 ∈ ω
12 r19.3rmv 3555 . . . . . . . . 9 (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑))
1311, 12ax-mp 5 . . . . . . . 8 (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)
14 rabid2 2684 . . . . . . . 8 (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑)
1513, 14sylbb2 138 . . . . . . 7 (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑})
1615eleq1d 2275 . . . . . 6 (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
178, 16mtbii 676 . . . . 5 (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)
1817con2i 628 . . . 4 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑)
19 infm 7016 . . . . 5 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑})
20 biidd 172 . . . . . . . 8 (𝑦 = 𝑧 → (𝜑𝜑))
2120elrab 2933 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑))
2221simprbi 275 . . . . . 6 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2322exlimiv 1622 . . . . 5 (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2419, 23syl 14 . . . 4 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2518, 24orim12i 761 . . 3 (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑𝜑))
267, 25ax-mp 5 . 2 𝜑𝜑)
27 orcom 730 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
2826, 27mpbi 145 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 710   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  c0 3464   class class class wbr 4051  ωcom 4646  cdom 6839  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator