ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffiexmid GIF version

Theorem inffiexmid 6908
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
Hypothesis
Ref Expression
inffiexmid.1 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
Assertion
Ref Expression
inffiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem inffiexmid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4594 . . . . 5 ω ∈ V
21rabex 4149 . . . 4 {𝑦 ∈ ω ∣ 𝜑} ∈ V
3 eleq1 2240 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
4 breq2 4009 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))
53, 4orbi12d 793 . . . 4 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})))
6 inffiexmid.1 . . . 4 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
72, 5, 6vtocl 2793 . . 3 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})
8 ominf 6898 . . . . . 6 ¬ ω ∈ Fin
9 peano1 4595 . . . . . . . . . 10 ∅ ∈ ω
10 elex2 2755 . . . . . . . . . 10 (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω)
119, 10ax-mp 5 . . . . . . . . 9 𝑤 𝑤 ∈ ω
12 r19.3rmv 3515 . . . . . . . . 9 (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑))
1311, 12ax-mp 5 . . . . . . . 8 (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)
14 rabid2 2654 . . . . . . . 8 (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑)
1513, 14sylbb2 138 . . . . . . 7 (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑})
1615eleq1d 2246 . . . . . 6 (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
178, 16mtbii 674 . . . . 5 (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)
1817con2i 627 . . . 4 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑)
19 infm 6906 . . . . 5 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑})
20 biidd 172 . . . . . . . 8 (𝑦 = 𝑧 → (𝜑𝜑))
2120elrab 2895 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑))
2221simprbi 275 . . . . . 6 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2322exlimiv 1598 . . . . 5 (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2419, 23syl 14 . . . 4 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2518, 24orim12i 759 . . 3 (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑𝜑))
267, 25ax-mp 5 . 2 𝜑𝜑)
27 orcom 728 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
2826, 27mpbi 145 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 708   = wceq 1353  wex 1492  wcel 2148  wral 2455  {crab 2459  c0 3424   class class class wbr 4005  ωcom 4591  cdom 6741  Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator