ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffiexmid GIF version

Theorem inffiexmid 6962
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
Hypothesis
Ref Expression
inffiexmid.1 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
Assertion
Ref Expression
inffiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem inffiexmid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4625 . . . . 5 ω ∈ V
21rabex 4173 . . . 4 {𝑦 ∈ ω ∣ 𝜑} ∈ V
3 eleq1 2256 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
4 breq2 4033 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))
53, 4orbi12d 794 . . . 4 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})))
6 inffiexmid.1 . . . 4 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
72, 5, 6vtocl 2814 . . 3 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})
8 ominf 6952 . . . . . 6 ¬ ω ∈ Fin
9 peano1 4626 . . . . . . . . . 10 ∅ ∈ ω
10 elex2 2776 . . . . . . . . . 10 (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω)
119, 10ax-mp 5 . . . . . . . . 9 𝑤 𝑤 ∈ ω
12 r19.3rmv 3537 . . . . . . . . 9 (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑))
1311, 12ax-mp 5 . . . . . . . 8 (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)
14 rabid2 2671 . . . . . . . 8 (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑)
1513, 14sylbb2 138 . . . . . . 7 (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑})
1615eleq1d 2262 . . . . . 6 (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
178, 16mtbii 675 . . . . 5 (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)
1817con2i 628 . . . 4 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑)
19 infm 6960 . . . . 5 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑})
20 biidd 172 . . . . . . . 8 (𝑦 = 𝑧 → (𝜑𝜑))
2120elrab 2916 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑))
2221simprbi 275 . . . . . 6 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2322exlimiv 1609 . . . . 5 (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2419, 23syl 14 . . . 4 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2518, 24orim12i 760 . . 3 (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑𝜑))
267, 25ax-mp 5 . 2 𝜑𝜑)
27 orcom 729 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
2826, 27mpbi 145 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2164  wral 2472  {crab 2476  c0 3446   class class class wbr 4029  ωcom 4622  cdom 6793  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator