ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffiexmid GIF version

Theorem inffiexmid 6800
Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
Hypothesis
Ref Expression
inffiexmid.1 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
Assertion
Ref Expression
inffiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem inffiexmid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4507 . . . . 5 ω ∈ V
21rabex 4072 . . . 4 {𝑦 ∈ ω ∣ 𝜑} ∈ V
3 eleq1 2202 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
4 breq2 3933 . . . . 5 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))
53, 4orbi12d 782 . . . 4 (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})))
6 inffiexmid.1 . . . 4 (𝑥 ∈ Fin ∨ ω ≼ 𝑥)
72, 5, 6vtocl 2740 . . 3 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑})
8 ominf 6790 . . . . . 6 ¬ ω ∈ Fin
9 peano1 4508 . . . . . . . . . 10 ∅ ∈ ω
10 elex2 2702 . . . . . . . . . 10 (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω)
119, 10ax-mp 5 . . . . . . . . 9 𝑤 𝑤 ∈ ω
12 r19.3rmv 3453 . . . . . . . . 9 (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑))
1311, 12ax-mp 5 . . . . . . . 8 (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)
14 rabid2 2607 . . . . . . . 8 (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑)
1513, 14sylbb2 137 . . . . . . 7 (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑})
1615eleq1d 2208 . . . . . 6 (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin))
178, 16mtbii 663 . . . . 5 (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)
1817con2i 616 . . . 4 ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑)
19 infm 6798 . . . . 5 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑})
20 biidd 171 . . . . . . . 8 (𝑦 = 𝑧 → (𝜑𝜑))
2120elrab 2840 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑))
2221simprbi 273 . . . . . 6 (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2322exlimiv 1577 . . . . 5 (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2419, 23syl 14 . . . 4 (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑)
2518, 24orim12i 748 . . 3 (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑𝜑))
267, 25ax-mp 5 . 2 𝜑𝜑)
27 orcom 717 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
2826, 27mpbi 144 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wo 697   = wceq 1331  wex 1468  wcel 1480  wral 2416  {crab 2420  c0 3363   class class class wbr 3929  ωcom 4504  cdom 6633  Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator