| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inffiexmid | GIF version | ||
| Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.) |
| Ref | Expression |
|---|---|
| inffiexmid.1 | ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) |
| Ref | Expression |
|---|---|
| inffiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4640 | . . . . 5 ⊢ ω ∈ V | |
| 2 | 1 | rabex 4187 | . . . 4 ⊢ {𝑦 ∈ ω ∣ 𝜑} ∈ V |
| 3 | eleq1 2267 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)) | |
| 4 | breq2 4047 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑})) | |
| 5 | 3, 4 | orbi12d 794 | . . . 4 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))) |
| 6 | inffiexmid.1 | . . . 4 ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) | |
| 7 | 2, 5, 6 | vtocl 2826 | . . 3 ⊢ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) |
| 8 | ominf 6992 | . . . . . 6 ⊢ ¬ ω ∈ Fin | |
| 9 | peano1 4641 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
| 10 | elex2 2787 | . . . . . . . . . 10 ⊢ (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃𝑤 𝑤 ∈ ω |
| 12 | r19.3rmv 3550 | . . . . . . . . 9 ⊢ (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (𝜑 ↔ ∀𝑦 ∈ ω 𝜑) |
| 14 | rabid2 2682 | . . . . . . . 8 ⊢ (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑) | |
| 15 | 13, 14 | sylbb2 138 | . . . . . . 7 ⊢ (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑}) |
| 16 | 15 | eleq1d 2273 | . . . . . 6 ⊢ (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)) |
| 17 | 8, 16 | mtbii 675 | . . . . 5 ⊢ (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin) |
| 18 | 17 | con2i 628 | . . . 4 ⊢ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑) |
| 19 | infm 7000 | . . . . 5 ⊢ (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑}) | |
| 20 | biidd 172 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜑)) | |
| 21 | 20 | elrab 2928 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑)) |
| 22 | 21 | simprbi 275 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
| 23 | 22 | exlimiv 1620 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
| 24 | 19, 23 | syl 14 | . . . 4 ⊢ (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
| 25 | 18, 24 | orim12i 760 | . . 3 ⊢ (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑 ∨ 𝜑)) |
| 26 | 7, 25 | ax-mp 5 | . 2 ⊢ (¬ 𝜑 ∨ 𝜑) |
| 27 | orcom 729 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 28 | 26, 27 | mpbi 145 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 {crab 2487 ∅c0 3459 class class class wbr 4043 ωcom 4637 ≼ cdom 6825 Fincfn 6826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |