| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inffiexmid | GIF version | ||
| Description: If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.) |
| Ref | Expression |
|---|---|
| inffiexmid.1 | ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) |
| Ref | Expression |
|---|---|
| inffiexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4649 | . . . . 5 ⊢ ω ∈ V | |
| 2 | 1 | rabex 4196 | . . . 4 ⊢ {𝑦 ∈ ω ∣ 𝜑} ∈ V |
| 3 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (𝑥 ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)) | |
| 4 | breq2 4055 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → (ω ≼ 𝑥 ↔ ω ≼ {𝑦 ∈ ω ∣ 𝜑})) | |
| 5 | 3, 4 | orbi12d 795 | . . . 4 ⊢ (𝑥 = {𝑦 ∈ ω ∣ 𝜑} → ((𝑥 ∈ Fin ∨ ω ≼ 𝑥) ↔ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}))) |
| 6 | inffiexmid.1 | . . . 4 ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) | |
| 7 | 2, 5, 6 | vtocl 2829 | . . 3 ⊢ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) |
| 8 | ominf 7008 | . . . . . 6 ⊢ ¬ ω ∈ Fin | |
| 9 | peano1 4650 | . . . . . . . . . 10 ⊢ ∅ ∈ ω | |
| 10 | elex2 2790 | . . . . . . . . . 10 ⊢ (∅ ∈ ω → ∃𝑤 𝑤 ∈ ω) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃𝑤 𝑤 ∈ ω |
| 12 | r19.3rmv 3555 | . . . . . . . . 9 ⊢ (∃𝑤 𝑤 ∈ ω → (𝜑 ↔ ∀𝑦 ∈ ω 𝜑)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (𝜑 ↔ ∀𝑦 ∈ ω 𝜑) |
| 14 | rabid2 2684 | . . . . . . . 8 ⊢ (ω = {𝑦 ∈ ω ∣ 𝜑} ↔ ∀𝑦 ∈ ω 𝜑) | |
| 15 | 13, 14 | sylbb2 138 | . . . . . . 7 ⊢ (𝜑 → ω = {𝑦 ∈ ω ∣ 𝜑}) |
| 16 | 15 | eleq1d 2275 | . . . . . 6 ⊢ (𝜑 → (ω ∈ Fin ↔ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin)) |
| 17 | 8, 16 | mtbii 676 | . . . . 5 ⊢ (𝜑 → ¬ {𝑦 ∈ ω ∣ 𝜑} ∈ Fin) |
| 18 | 17 | con2i 628 | . . . 4 ⊢ ({𝑦 ∈ ω ∣ 𝜑} ∈ Fin → ¬ 𝜑) |
| 19 | infm 7016 | . . . . 5 ⊢ (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → ∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑}) | |
| 20 | biidd 172 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜑)) | |
| 21 | 20 | elrab 2933 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} ↔ (𝑧 ∈ ω ∧ 𝜑)) |
| 22 | 21 | simprbi 275 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
| 23 | 22 | exlimiv 1622 | . . . . 5 ⊢ (∃𝑧 𝑧 ∈ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
| 24 | 19, 23 | syl 14 | . . . 4 ⊢ (ω ≼ {𝑦 ∈ ω ∣ 𝜑} → 𝜑) |
| 25 | 18, 24 | orim12i 761 | . . 3 ⊢ (({𝑦 ∈ ω ∣ 𝜑} ∈ Fin ∨ ω ≼ {𝑦 ∈ ω ∣ 𝜑}) → (¬ 𝜑 ∨ 𝜑)) |
| 26 | 7, 25 | ax-mp 5 | . 2 ⊢ (¬ 𝜑 ∨ 𝜑) |
| 27 | orcom 730 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 28 | 26, 27 | mpbi 145 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 {crab 2489 ∅c0 3464 class class class wbr 4051 ωcom 4646 ≼ cdom 6839 Fincfn 6840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |