ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq GIF version

Theorem nndceq 6645
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where 𝐵 is zero, see nndceq0 4710. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nndceq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)

Proof of Theorem nndceq
StepHypRef Expression
1 nntri3or 6639 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 elirr 4633 . . . . . . 7 ¬ 𝐴𝐴
3 eleq2 2293 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
42, 3mtbii 678 . . . . . 6 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
54con2i 630 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
65olcd 739 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
7 orc 717 . . . 4 (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
8 elirr 4633 . . . . . . 7 ¬ 𝐵𝐵
9 eleq2 2293 . . . . . . 7 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
108, 9mtbiri 679 . . . . . 6 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
1110con2i 630 . . . . 5 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1211olcd 739 . . . 4 (𝐵𝐴 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
136, 7, 123jaoi 1337 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
141, 13syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
15 df-dc 840 . 2 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
1614, 15sylibr 134 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3o 1001   = wceq 1395  wcel 2200  ωcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683
This theorem is referenced by:  nndifsnid  6653  fidceq  7031  unsnfidcex  7082  unsnfidcel  7083  nninfwlporlemd  7339  nninfwlporlem  7340  nninfwlpoimlemg  7342  nninfwlpoimlemginf  7343  2onetap  7441  2omotaplemap  7443  enqdc  7548  nninfctlemfo  12561  xpscf  13380  2omap  16359  nninfsellemdc  16376
  Copyright terms: Public domain W3C validator