| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndceq | GIF version | ||
| Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where 𝐵 is zero, see nndceq0 4655. (Contributed by Jim Kingdon, 31-Aug-2019.) |
| Ref | Expression |
|---|---|
| nndceq | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nntri3or 6560 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 2 | elirr 4578 | . . . . . . 7 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 3 | eleq2 2260 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ 𝐵)) | |
| 4 | 2, 3 | mtbii 675 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| 5 | 4 | con2i 628 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 = 𝐵) |
| 6 | 5 | olcd 735 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 7 | orc 713 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 8 | elirr 4578 | . . . . . . 7 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 9 | eleq2 2260 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
| 10 | 8, 9 | mtbiri 676 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴) |
| 11 | 10 | con2i 628 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = 𝐵) |
| 12 | 11 | olcd 735 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 13 | 6, 7, 12 | 3jaoi 1314 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 14 | 1, 13 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 15 | df-dc 836 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 16 | 14, 15 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: nndifsnid 6574 fidceq 6939 unsnfidcex 6990 unsnfidcel 6991 nninfwlporlemd 7247 nninfwlporlem 7248 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 2onetap 7338 2omotaplemap 7340 enqdc 7445 nninfctlemfo 12232 xpscf 13049 2omap 15726 nninfsellemdc 15741 |
| Copyright terms: Public domain | W3C validator |