ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq GIF version

Theorem nndceq 6467
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where 𝐵 is zero, see nndceq0 4595. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nndceq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)

Proof of Theorem nndceq
StepHypRef Expression
1 nntri3or 6461 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 elirr 4518 . . . . . . 7 ¬ 𝐴𝐴
3 eleq2 2230 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
42, 3mtbii 664 . . . . . 6 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
54con2i 617 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
65olcd 724 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
7 orc 702 . . . 4 (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
8 elirr 4518 . . . . . . 7 ¬ 𝐵𝐵
9 eleq2 2230 . . . . . . 7 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
108, 9mtbiri 665 . . . . . 6 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
1110con2i 617 . . . . 5 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1211olcd 724 . . . 4 (𝐵𝐴 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
136, 7, 123jaoi 1293 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
141, 13syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
15 df-dc 825 . 2 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
1614, 15sylibr 133 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  w3o 967   = wceq 1343  wcel 2136  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by:  nndifsnid  6475  fidceq  6835  unsnfidcex  6885  unsnfidcel  6886  enqdc  7302  nninfsellemdc  13900
  Copyright terms: Public domain W3C validator