![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndceq | GIF version |
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where 𝐵 is zero, see nndceq0 4619. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
nndceq | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri3or 6496 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
2 | elirr 4542 | . . . . . . 7 ⊢ ¬ 𝐴 ∈ 𝐴 | |
3 | eleq2 2241 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ 𝐵)) | |
4 | 2, 3 | mtbii 674 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
5 | 4 | con2i 627 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 = 𝐵) |
6 | 5 | olcd 734 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
7 | orc 712 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
8 | elirr 4542 | . . . . . . 7 ⊢ ¬ 𝐵 ∈ 𝐵 | |
9 | eleq2 2241 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
10 | 8, 9 | mtbiri 675 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴) |
11 | 10 | con2i 627 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = 𝐵) |
12 | 11 | olcd 734 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
13 | 6, 7, 12 | 3jaoi 1303 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
14 | 1, 13 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
15 | df-dc 835 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
16 | 14, 15 | sylibr 134 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 |
This theorem is referenced by: nndifsnid 6510 fidceq 6871 unsnfidcex 6921 unsnfidcel 6922 nninfwlporlemd 7172 nninfwlporlem 7173 nninfwlpoimlemg 7175 nninfwlpoimlemginf 7176 2onetap 7256 2omotaplemap 7258 enqdc 7362 xpscf 12771 nninfsellemdc 14844 |
Copyright terms: Public domain | W3C validator |