ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndceq GIF version

Theorem nndceq 6403
Description: Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where 𝐵 is zero, see nndceq0 4539. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
nndceq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)

Proof of Theorem nndceq
StepHypRef Expression
1 nntri3or 6397 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
2 elirr 4464 . . . . . . 7 ¬ 𝐴𝐴
3 eleq2 2204 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
42, 3mtbii 664 . . . . . 6 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
54con2i 617 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
65olcd 724 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
7 orc 702 . . . 4 (𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
8 elirr 4464 . . . . . . 7 ¬ 𝐵𝐵
9 eleq2 2204 . . . . . . 7 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
108, 9mtbiri 665 . . . . . 6 (𝐴 = 𝐵 → ¬ 𝐵𝐴)
1110con2i 617 . . . . 5 (𝐵𝐴 → ¬ 𝐴 = 𝐵)
1211olcd 724 . . . 4 (𝐵𝐴 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
136, 7, 123jaoi 1282 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
141, 13syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
15 df-dc 821 . 2 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
1614, 15sylibr 133 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820  w3o 962   = wceq 1332  wcel 1481  ωcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513
This theorem is referenced by:  nndifsnid  6411  fidceq  6771  unsnfidcex  6816  unsnfidcel  6817  enqdc  7193  nninfsellemdc  13381
  Copyright terms: Public domain W3C validator