Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltposr | GIF version |
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
ltposr | ⊢ <R Po R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7668 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
2 | id 19 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝑓 → [〈𝑥, 𝑦〉] ~R = 𝑓) | |
3 | 2, 2 | breq12d 3995 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝑓 → ([〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ 𝑓 <R 𝑓)) |
4 | 3 | notbid 657 | . . . . 5 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝑓 → (¬ [〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ ¬ 𝑓 <R 𝑓)) |
5 | ltsopr 7537 | . . . . . . . 8 ⊢ <P Or P | |
6 | ltrelpr 7446 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
7 | 5, 6 | soirri 4998 | . . . . . . 7 ⊢ ¬ (𝑥 +P 𝑦)<P (𝑥 +P 𝑦) |
8 | addcomprg 7519 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥)) | |
9 | 8 | breq2d 3994 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 𝑦)<P (𝑥 +P 𝑦) ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) |
10 | 7, 9 | mtbii 664 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ¬ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)) |
11 | ltsrprg 7688 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) | |
12 | 11 | anidms 395 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) |
13 | 10, 12 | mtbird 663 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ¬ [〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ) |
14 | 1, 4, 13 | ecoptocl 6588 | . . . 4 ⊢ (𝑓 ∈ R → ¬ 𝑓 <R 𝑓) |
15 | 14 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ R) → ¬ 𝑓 <R 𝑓) |
16 | lttrsr 7703 | . . . 4 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | |
17 | 16 | adantl 275 | . . 3 ⊢ ((⊤ ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) |
18 | 15, 17 | ispod 4282 | . 2 ⊢ (⊤ → <R Po R) |
19 | 18 | mptru 1352 | 1 ⊢ <R Po R |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 Po wpo 4272 (class class class)co 5842 [cec 6499 Pcnp 7232 +P cpp 7234 <P cltp 7236 ~R cer 7237 Rcnr 7238 <R cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-ltr 7671 |
This theorem is referenced by: ltsosr 7705 |
Copyright terms: Public domain | W3C validator |