![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltposr | GIF version |
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
ltposr | ⊢ <R Po R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7728 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
2 | id 19 | . . . . . . 7 ⊢ ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → [⟨𝑥, 𝑦⟩] ~R = 𝑓) | |
3 | 2, 2 | breq12d 4018 | . . . . . 6 ⊢ ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ 𝑓 <R 𝑓)) |
4 | 3 | notbid 667 | . . . . 5 ⊢ ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (¬ [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ ¬ 𝑓 <R 𝑓)) |
5 | ltsopr 7597 | . . . . . . . 8 ⊢ <P Or P | |
6 | ltrelpr 7506 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
7 | 5, 6 | soirri 5025 | . . . . . . 7 ⊢ ¬ (𝑥 +P 𝑦)<P (𝑥 +P 𝑦) |
8 | addcomprg 7579 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥)) | |
9 | 8 | breq2d 4017 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 𝑦)<P (𝑥 +P 𝑦) ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) |
10 | 7, 9 | mtbii 674 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ¬ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)) |
11 | ltsrprg 7748 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) | |
12 | 11 | anidms 397 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) |
13 | 10, 12 | mtbird 673 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ¬ [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) |
14 | 1, 4, 13 | ecoptocl 6624 | . . . 4 ⊢ (𝑓 ∈ R → ¬ 𝑓 <R 𝑓) |
15 | 14 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ R) → ¬ 𝑓 <R 𝑓) |
16 | lttrsr 7763 | . . . 4 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | |
17 | 16 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) |
18 | 15, 17 | ispod 4306 | . 2 ⊢ (⊤ → <R Po R) |
19 | 18 | mptru 1362 | 1 ⊢ <R Po R |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 Po wpo 4296 (class class class)co 5877 [cec 6535 Pcnp 7292 +P cpp 7294 <P cltp 7296 ~R cer 7297 Rcnr 7298 <R cltr 7304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-iplp 7469 df-iltp 7471 df-enr 7727 df-nr 7728 df-ltr 7731 |
This theorem is referenced by: ltsosr 7765 |
Copyright terms: Public domain | W3C validator |