| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltposr | GIF version | ||
| Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| ltposr | ⊢ <R Po R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7860 | . . . . 5 ⊢ R = ((P × P) / ~R ) | |
| 2 | id 19 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝑓 → [〈𝑥, 𝑦〉] ~R = 𝑓) | |
| 3 | 2, 2 | breq12d 4064 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝑓 → ([〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ 𝑓 <R 𝑓)) |
| 4 | 3 | notbid 669 | . . . . 5 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝑓 → (¬ [〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ ¬ 𝑓 <R 𝑓)) |
| 5 | ltsopr 7729 | . . . . . . . 8 ⊢ <P Or P | |
| 6 | ltrelpr 7638 | . . . . . . . 8 ⊢ <P ⊆ (P × P) | |
| 7 | 5, 6 | soirri 5086 | . . . . . . 7 ⊢ ¬ (𝑥 +P 𝑦)<P (𝑥 +P 𝑦) |
| 8 | addcomprg 7711 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥)) | |
| 9 | 8 | breq2d 4063 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝑥 +P 𝑦)<P (𝑥 +P 𝑦) ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) |
| 10 | 7, 9 | mtbii 676 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ¬ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)) |
| 11 | ltsrprg 7880 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) | |
| 12 | 11 | anidms 397 | . . . . . 6 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ([〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))) |
| 13 | 10, 12 | mtbird 675 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → ¬ [〈𝑥, 𝑦〉] ~R <R [〈𝑥, 𝑦〉] ~R ) |
| 14 | 1, 4, 13 | ecoptocl 6722 | . . . 4 ⊢ (𝑓 ∈ R → ¬ 𝑓 <R 𝑓) |
| 15 | 14 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑓 ∈ R) → ¬ 𝑓 <R 𝑓) |
| 16 | lttrsr 7895 | . . . 4 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | |
| 17 | 16 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) |
| 18 | 15, 17 | ispod 4359 | . 2 ⊢ (⊤ → <R Po R) |
| 19 | 18 | mptru 1382 | 1 ⊢ <R Po R |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 〈cop 3641 class class class wbr 4051 Po wpo 4349 (class class class)co 5957 [cec 6631 Pcnp 7424 +P cpp 7426 <P cltp 7428 ~R cer 7429 Rcnr 7430 <R cltr 7436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-iplp 7601 df-iltp 7603 df-enr 7859 df-nr 7860 df-ltr 7863 |
| This theorem is referenced by: ltsosr 7897 |
| Copyright terms: Public domain | W3C validator |