| Step | Hyp | Ref
| Expression |
| 1 | | ssun1 3327 |
. . . . 5
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 2 | | fsumsplit.2 |
. . . . 5
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
| 3 | 1, 2 | sseqtrrid 3235 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| 4 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 5 | 4 | orcd 734 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
| 6 | | fsumsplit.1 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| 7 | | disjel 3506 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
| 8 | 7 | ex 115 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 9 | 8 | con2d 625 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 10 | 9 | imp 124 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
| 11 | 6, 10 | sylan 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
| 12 | 11 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
| 13 | 12 | olcd 735 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
| 14 | 2 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (𝐴 ∪ 𝐵))) |
| 15 | 14 | biimpa 296 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 16 | | elun 3305 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 17 | 15, 16 | sylib 122 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 18 | 5, 13, 17 | mpjaodan 799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
| 19 | | df-dc 836 |
. . . . . 6
⊢
(DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
| 20 | 18, 19 | sylibr 134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → DECID 𝑥 ∈ 𝐴) |
| 21 | 20 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑈 DECID 𝑥 ∈ 𝐴) |
| 22 | 3 | sselda 3184 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑈) |
| 23 | | fsumsplit.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 24 | 22, 23 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 25 | 24 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
| 26 | | fsumsplit.3 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 27 | 26 | olcd 735 |
. . . 4
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑈 ⊆
(ℤ≥‘0) ∧ ∀𝑥 ∈
(ℤ≥‘0)DECID 𝑥 ∈ 𝑈) ∨ 𝑈 ∈ Fin)) |
| 28 | 3, 21, 25, 27 | isumss2 11575 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
| 29 | | ssun2 3328 |
. . . . 5
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 30 | 29, 2 | sseqtrrid 3235 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 31 | 6 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → (𝐴 ∩ 𝐵) = ∅) |
| 32 | 31, 7 | sylancom 420 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝐵) |
| 33 | 32 | olcd 735 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 34 | 17 | orcanai 929 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 35 | 34 | orcd 734 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑈) ∧ ¬ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 36 | 33, 35, 18 | mpjaodan 799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 37 | | df-dc 836 |
. . . . . 6
⊢
(DECID 𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 38 | 36, 37 | sylibr 134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → DECID 𝑥 ∈ 𝐵) |
| 39 | 38 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑈 DECID 𝑥 ∈ 𝐵) |
| 40 | 30 | sselda 3184 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝑈) |
| 41 | 40, 23 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 42 | 41 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 43 | 30, 39, 42, 27 | isumss2 11575 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0)) |
| 44 | 28, 43 | oveq12d 5943 |
. 2
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) = (Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0) + Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0))) |
| 45 | | 0cnd 8036 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 0 ∈ ℂ) |
| 46 | | eleq1w 2257 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝑥 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 47 | 46 | dcbid 839 |
. . . . 5
⊢ (𝑥 = 𝑘 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
| 48 | 21 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 DECID 𝑥 ∈ 𝐴) |
| 49 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝑈) |
| 50 | 47, 48, 49 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → DECID 𝑘 ∈ 𝐴) |
| 51 | 23, 45, 50 | ifcldcd 3598 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
| 52 | | eleq1w 2257 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (𝑥 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) |
| 53 | 52 | dcbid 839 |
. . . . 5
⊢ (𝑥 = 𝑘 → (DECID 𝑥 ∈ 𝐵 ↔ DECID 𝑘 ∈ 𝐵)) |
| 54 | 39 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 DECID 𝑥 ∈ 𝐵) |
| 55 | 53, 54, 49 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → DECID 𝑘 ∈ 𝐵) |
| 56 | 23, 45, 55 | ifcldcd 3598 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
| 57 | 26, 51, 56 | fsumadd 11588 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0) + Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0))) |
| 58 | 2 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
| 59 | | elun 3305 |
. . . . . 6
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
| 60 | 58, 59 | bitrdi 196 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵))) |
| 61 | 60 | biimpa 296 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
| 62 | | iftrue 3567 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
| 63 | 62 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
| 64 | | noel 3455 |
. . . . . . . . . . 11
⊢ ¬
𝑘 ∈
∅ |
| 65 | 6 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝐴 ∩ 𝐵) ↔ 𝑘 ∈ ∅)) |
| 66 | | elin 3347 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐴 ∩ 𝐵) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
| 67 | 65, 66 | bitr3di 195 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵))) |
| 68 | 64, 67 | mtbii 675 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
| 69 | | imnan 691 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵) ↔ ¬ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
| 70 | 68, 69 | sylibr 134 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵)) |
| 71 | 70 | imp 124 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) |
| 72 | 71 | iffalsed 3572 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, 𝐶, 0) = 0) |
| 73 | 63, 72 | oveq12d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (𝐶 + 0)) |
| 74 | 24 | addridd 8192 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 + 0) = 𝐶) |
| 75 | 73, 74 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
| 76 | 70 | con2d 625 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴)) |
| 77 | 76 | imp 124 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ 𝐴) |
| 78 | 77 | iffalsed 3572 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐴, 𝐶, 0) = 0) |
| 79 | | iftrue 3567 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 0) = 𝐶) |
| 80 | 79 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 0) = 𝐶) |
| 81 | 78, 80 | oveq12d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (0 + 𝐶)) |
| 82 | 41 | addlidd 8193 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (0 + 𝐶) = 𝐶) |
| 83 | 81, 82 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
| 84 | 75, 83 | jaodan 798 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
| 85 | 61, 84 | syldan 282 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
| 86 | 85 | sumeq2dv 11550 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = Σ𝑘 ∈ 𝑈 𝐶) |
| 87 | 44, 57, 86 | 3eqtr2rd 2236 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |