ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit GIF version

Theorem fsumsplit 11428
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 3310 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 3218 . . . 4 (𝜑𝐴𝑈)
4 simpr 110 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → 𝑥𝐴)
54orcd 734 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
6 fsumsplit.1 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = ∅)
7 disjel 3489 . . . . . . . . . . . . 13 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
87ex 115 . . . . . . . . . . . 12 ((𝐴𝐵) = ∅ → (𝑥𝐴 → ¬ 𝑥𝐵))
98con2d 625 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ → (𝑥𝐵 → ¬ 𝑥𝐴))
109imp 124 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
116, 10sylan 283 . . . . . . . . 9 ((𝜑𝑥𝐵) → ¬ 𝑥𝐴)
1211adantlr 477 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1312olcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
142eleq2d 2257 . . . . . . . . 9 (𝜑 → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
1514biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥 ∈ (𝐴𝐵))
16 elun 3288 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1715, 16sylib 122 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑥𝐴𝑥𝐵))
185, 13, 17mpjaodan 799 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
19 df-dc 836 . . . . . 6 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
2018, 19sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐴)
2120ralrimiva 2560 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐴)
223sselda 3167 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
23 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2422, 23syldan 282 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524ralrimiva 2560 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
26 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
2726olcd 735 . . . 4 (𝜑 → ((0 ∈ ℤ ∧ 𝑈 ⊆ (ℤ‘0) ∧ ∀𝑥 ∈ (ℤ‘0)DECID 𝑥𝑈) ∨ 𝑈 ∈ Fin))
283, 21, 25, 27isumss2 11414 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
29 ssun2 3311 . . . . 5 𝐵 ⊆ (𝐴𝐵)
3029, 2sseqtrrid 3218 . . . 4 (𝜑𝐵𝑈)
316ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝐴𝐵) = ∅)
3231, 7sylancom 420 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
3332olcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3417orcanai 929 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
3534orcd 734 . . . . . . 7 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3633, 35, 18mpjaodan 799 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
37 df-dc 836 . . . . . 6 (DECID 𝑥𝐵 ↔ (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐵)
3938ralrimiva 2560 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐵)
4030sselda 3167 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
4140, 23syldan 282 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4241ralrimiva 2560 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
4330, 39, 42, 27isumss2 11414 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
4428, 43oveq12d 5906 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
45 0cnd 7963 . . . 4 ((𝜑𝑘𝑈) → 0 ∈ ℂ)
46 eleq1w 2248 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
4746dcbid 839 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐴DECID 𝑘𝐴))
4821adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐴)
49 simpr 110 . . . . 5 ((𝜑𝑘𝑈) → 𝑘𝑈)
5047, 48, 49rspcdva 2858 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
5123, 45, 50ifcldcd 3582 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
52 eleq1w 2248 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐵𝑘𝐵))
5352dcbid 839 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐵DECID 𝑘𝐵))
5439adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐵)
5553, 54, 49rspcdva 2858 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
5623, 45, 55ifcldcd 3582 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5726, 51, 56fsumadd 11427 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
582eleq2d 2257 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
59 elun 3288 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6058, 59bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
6160biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
62 iftrue 3551 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
6362adantl 277 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
64 noel 3438 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
656eleq2d 2257 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
66 elin 3330 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6765, 66bitr3di 195 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
6864, 67mtbii 675 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
69 imnan 691 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
7068, 69sylibr 134 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
7170imp 124 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7271iffalsed 3556 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
7363, 72oveq12d 5906 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
7424addid1d 8119 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
7573, 74eqtrd 2220 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
7670con2d 625 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
7776imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
7877iffalsed 3556 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
79 iftrue 3551 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8079adantl 277 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8178, 80oveq12d 5906 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
8241addid2d 8120 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
8381, 82eqtrd 2220 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8475, 83jaodan 798 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8561, 84syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8685sumeq2dv 11389 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
8744, 57, 863eqtr2rd 2227 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 979   = wceq 1363  wcel 2158  wral 2465  cun 3139  cin 3140  wss 3141  c0 3434  ifcif 3546  cfv 5228  (class class class)co 5888  Fincfn 6753  cc 7822  0cc0 7824   + caddc 7827  cz 9266  cuz 9541  Σcsu 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375
This theorem is referenced by:  fsumsplitf  11429  sumpr  11434  sumtp  11435  fsumm1  11437  fsum1p  11439  fsumsplitsnun  11440  fsum2dlemstep  11455  fsumconst  11475  fsumlessfi  11481  fsumabs  11486  fsumiun  11498  mertenslemi1  11556  fsumcncntop  14283  cvgcmp2nlemabs  15008
  Copyright terms: Public domain W3C validator