ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit GIF version

Theorem fsumsplit 11574
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 3327 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 3235 . . . 4 (𝜑𝐴𝑈)
4 simpr 110 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → 𝑥𝐴)
54orcd 734 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
6 fsumsplit.1 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = ∅)
7 disjel 3506 . . . . . . . . . . . . 13 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
87ex 115 . . . . . . . . . . . 12 ((𝐴𝐵) = ∅ → (𝑥𝐴 → ¬ 𝑥𝐵))
98con2d 625 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ → (𝑥𝐵 → ¬ 𝑥𝐴))
109imp 124 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
116, 10sylan 283 . . . . . . . . 9 ((𝜑𝑥𝐵) → ¬ 𝑥𝐴)
1211adantlr 477 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1312olcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
142eleq2d 2266 . . . . . . . . 9 (𝜑 → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
1514biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥 ∈ (𝐴𝐵))
16 elun 3305 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1715, 16sylib 122 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑥𝐴𝑥𝐵))
185, 13, 17mpjaodan 799 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
19 df-dc 836 . . . . . 6 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
2018, 19sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐴)
2120ralrimiva 2570 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐴)
223sselda 3184 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
23 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2422, 23syldan 282 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524ralrimiva 2570 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
26 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
2726olcd 735 . . . 4 (𝜑 → ((0 ∈ ℤ ∧ 𝑈 ⊆ (ℤ‘0) ∧ ∀𝑥 ∈ (ℤ‘0)DECID 𝑥𝑈) ∨ 𝑈 ∈ Fin))
283, 21, 25, 27isumss2 11560 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
29 ssun2 3328 . . . . 5 𝐵 ⊆ (𝐴𝐵)
3029, 2sseqtrrid 3235 . . . 4 (𝜑𝐵𝑈)
316ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝐴𝐵) = ∅)
3231, 7sylancom 420 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
3332olcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3417orcanai 929 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
3534orcd 734 . . . . . . 7 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3633, 35, 18mpjaodan 799 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
37 df-dc 836 . . . . . 6 (DECID 𝑥𝐵 ↔ (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐵)
3938ralrimiva 2570 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐵)
4030sselda 3184 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
4140, 23syldan 282 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4241ralrimiva 2570 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
4330, 39, 42, 27isumss2 11560 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
4428, 43oveq12d 5941 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
45 0cnd 8021 . . . 4 ((𝜑𝑘𝑈) → 0 ∈ ℂ)
46 eleq1w 2257 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
4746dcbid 839 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐴DECID 𝑘𝐴))
4821adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐴)
49 simpr 110 . . . . 5 ((𝜑𝑘𝑈) → 𝑘𝑈)
5047, 48, 49rspcdva 2873 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
5123, 45, 50ifcldcd 3598 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
52 eleq1w 2257 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐵𝑘𝐵))
5352dcbid 839 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐵DECID 𝑘𝐵))
5439adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐵)
5553, 54, 49rspcdva 2873 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
5623, 45, 55ifcldcd 3598 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5726, 51, 56fsumadd 11573 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
582eleq2d 2266 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
59 elun 3305 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6058, 59bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
6160biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
62 iftrue 3567 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
6362adantl 277 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
64 noel 3455 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
656eleq2d 2266 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
66 elin 3347 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6765, 66bitr3di 195 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
6864, 67mtbii 675 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
69 imnan 691 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
7068, 69sylibr 134 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
7170imp 124 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7271iffalsed 3572 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
7363, 72oveq12d 5941 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
7424addridd 8177 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
7573, 74eqtrd 2229 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
7670con2d 625 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
7776imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
7877iffalsed 3572 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
79 iftrue 3567 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8079adantl 277 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8178, 80oveq12d 5941 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
8241addlidd 8178 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
8381, 82eqtrd 2229 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8475, 83jaodan 798 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8561, 84syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8685sumeq2dv 11535 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
8744, 57, 863eqtr2rd 2236 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wral 2475  cun 3155  cin 3156  wss 3157  c0 3451  ifcif 3562  cfv 5259  (class class class)co 5923  Fincfn 6800  cc 7879  0cc0 7881   + caddc 7884  cz 9328  cuz 9603  Σcsu 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521
This theorem is referenced by:  fsumsplitf  11575  sumpr  11580  sumtp  11581  fsumm1  11583  fsum1p  11585  fsumsplitsnun  11586  fsum2dlemstep  11601  fsumconst  11621  fsumlessfi  11627  fsumabs  11632  fsumiun  11644  mertenslemi1  11702  bitsinv1  12129  fsumcncntop  14813  dvmptfsum  14971  perfectlem2  15246  lgsquadlem2  15329  cvgcmp2nlemabs  15686
  Copyright terms: Public domain W3C validator