ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit GIF version

Theorem fsumsplit 11768
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 3338 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 3246 . . . 4 (𝜑𝐴𝑈)
4 simpr 110 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → 𝑥𝐴)
54orcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
6 fsumsplit.1 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = ∅)
7 disjel 3517 . . . . . . . . . . . . 13 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
87ex 115 . . . . . . . . . . . 12 ((𝐴𝐵) = ∅ → (𝑥𝐴 → ¬ 𝑥𝐵))
98con2d 625 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ → (𝑥𝐵 → ¬ 𝑥𝐴))
109imp 124 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
116, 10sylan 283 . . . . . . . . 9 ((𝜑𝑥𝐵) → ¬ 𝑥𝐴)
1211adantlr 477 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1312olcd 736 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
142eleq2d 2276 . . . . . . . . 9 (𝜑 → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
1514biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥 ∈ (𝐴𝐵))
16 elun 3316 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1715, 16sylib 122 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑥𝐴𝑥𝐵))
185, 13, 17mpjaodan 800 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
19 df-dc 837 . . . . . 6 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
2018, 19sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐴)
2120ralrimiva 2580 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐴)
223sselda 3195 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
23 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2422, 23syldan 282 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524ralrimiva 2580 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
26 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
2726olcd 736 . . . 4 (𝜑 → ((0 ∈ ℤ ∧ 𝑈 ⊆ (ℤ‘0) ∧ ∀𝑥 ∈ (ℤ‘0)DECID 𝑥𝑈) ∨ 𝑈 ∈ Fin))
283, 21, 25, 27isumss2 11754 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
29 ssun2 3339 . . . . 5 𝐵 ⊆ (𝐴𝐵)
3029, 2sseqtrrid 3246 . . . 4 (𝜑𝐵𝑈)
316ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝐴𝐵) = ∅)
3231, 7sylancom 420 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
3332olcd 736 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3417orcanai 930 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
3534orcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3633, 35, 18mpjaodan 800 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
37 df-dc 837 . . . . . 6 (DECID 𝑥𝐵 ↔ (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐵)
3938ralrimiva 2580 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐵)
4030sselda 3195 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
4140, 23syldan 282 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4241ralrimiva 2580 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
4330, 39, 42, 27isumss2 11754 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
4428, 43oveq12d 5972 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
45 0cnd 8078 . . . 4 ((𝜑𝑘𝑈) → 0 ∈ ℂ)
46 eleq1w 2267 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
4746dcbid 840 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐴DECID 𝑘𝐴))
4821adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐴)
49 simpr 110 . . . . 5 ((𝜑𝑘𝑈) → 𝑘𝑈)
5047, 48, 49rspcdva 2884 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
5123, 45, 50ifcldcd 3610 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
52 eleq1w 2267 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐵𝑘𝐵))
5352dcbid 840 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐵DECID 𝑘𝐵))
5439adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐵)
5553, 54, 49rspcdva 2884 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
5623, 45, 55ifcldcd 3610 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5726, 51, 56fsumadd 11767 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
582eleq2d 2276 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
59 elun 3316 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6058, 59bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
6160biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
62 iftrue 3578 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
6362adantl 277 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
64 noel 3466 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
656eleq2d 2276 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
66 elin 3358 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6765, 66bitr3di 195 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
6864, 67mtbii 676 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
69 imnan 692 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
7068, 69sylibr 134 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
7170imp 124 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7271iffalsed 3583 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
7363, 72oveq12d 5972 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
7424addridd 8234 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
7573, 74eqtrd 2239 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
7670con2d 625 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
7776imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
7877iffalsed 3583 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
79 iftrue 3578 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8079adantl 277 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8178, 80oveq12d 5972 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
8241addlidd 8235 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
8381, 82eqtrd 2239 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8475, 83jaodan 799 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8561, 84syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8685sumeq2dv 11729 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
8744, 57, 863eqtr2rd 2246 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wral 2485  cun 3166  cin 3167  wss 3168  c0 3462  ifcif 3573  cfv 5277  (class class class)co 5954  Fincfn 6837  cc 7936  0cc0 7938   + caddc 7941  cz 9385  cuz 9661  Σcsu 11714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715
This theorem is referenced by:  fsumsplitf  11769  sumpr  11774  sumtp  11775  fsumm1  11777  fsum1p  11779  fsumsplitsnun  11780  fsum2dlemstep  11795  fsumconst  11815  fsumlessfi  11821  fsumabs  11826  fsumiun  11838  mertenslemi1  11896  bitsinv1  12323  fsumcncntop  15089  dvmptfsum  15247  perfectlem2  15522  lgsquadlem2  15605  cvgcmp2nlemabs  16086
  Copyright terms: Public domain W3C validator