ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit GIF version

Theorem fsumsplit 11926
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 3367 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 3275 . . . 4 (𝜑𝐴𝑈)
4 simpr 110 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → 𝑥𝐴)
54orcd 738 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
6 fsumsplit.1 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = ∅)
7 disjel 3546 . . . . . . . . . . . . 13 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
87ex 115 . . . . . . . . . . . 12 ((𝐴𝐵) = ∅ → (𝑥𝐴 → ¬ 𝑥𝐵))
98con2d 627 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ → (𝑥𝐵 → ¬ 𝑥𝐴))
109imp 124 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
116, 10sylan 283 . . . . . . . . 9 ((𝜑𝑥𝐵) → ¬ 𝑥𝐴)
1211adantlr 477 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1312olcd 739 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
142eleq2d 2299 . . . . . . . . 9 (𝜑 → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
1514biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥 ∈ (𝐴𝐵))
16 elun 3345 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1715, 16sylib 122 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑥𝐴𝑥𝐵))
185, 13, 17mpjaodan 803 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
19 df-dc 840 . . . . . 6 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
2018, 19sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐴)
2120ralrimiva 2603 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐴)
223sselda 3224 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
23 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2422, 23syldan 282 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524ralrimiva 2603 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
26 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
2726olcd 739 . . . 4 (𝜑 → ((0 ∈ ℤ ∧ 𝑈 ⊆ (ℤ‘0) ∧ ∀𝑥 ∈ (ℤ‘0)DECID 𝑥𝑈) ∨ 𝑈 ∈ Fin))
283, 21, 25, 27isumss2 11912 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
29 ssun2 3368 . . . . 5 𝐵 ⊆ (𝐴𝐵)
3029, 2sseqtrrid 3275 . . . 4 (𝜑𝐵𝑈)
316ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝐴𝐵) = ∅)
3231, 7sylancom 420 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
3332olcd 739 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3417orcanai 933 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
3534orcd 738 . . . . . . 7 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3633, 35, 18mpjaodan 803 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
37 df-dc 840 . . . . . 6 (DECID 𝑥𝐵 ↔ (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐵)
3938ralrimiva 2603 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐵)
4030sselda 3224 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
4140, 23syldan 282 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4241ralrimiva 2603 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
4330, 39, 42, 27isumss2 11912 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
4428, 43oveq12d 6025 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
45 0cnd 8147 . . . 4 ((𝜑𝑘𝑈) → 0 ∈ ℂ)
46 eleq1w 2290 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
4746dcbid 843 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐴DECID 𝑘𝐴))
4821adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐴)
49 simpr 110 . . . . 5 ((𝜑𝑘𝑈) → 𝑘𝑈)
5047, 48, 49rspcdva 2912 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
5123, 45, 50ifcldcd 3640 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
52 eleq1w 2290 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐵𝑘𝐵))
5352dcbid 843 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐵DECID 𝑘𝐵))
5439adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐵)
5553, 54, 49rspcdva 2912 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
5623, 45, 55ifcldcd 3640 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5726, 51, 56fsumadd 11925 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
582eleq2d 2299 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
59 elun 3345 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6058, 59bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
6160biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
62 iftrue 3607 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
6362adantl 277 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
64 noel 3495 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
656eleq2d 2299 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
66 elin 3387 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6765, 66bitr3di 195 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
6864, 67mtbii 678 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
69 imnan 694 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
7068, 69sylibr 134 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
7170imp 124 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7271iffalsed 3612 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
7363, 72oveq12d 6025 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
7424addridd 8303 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
7573, 74eqtrd 2262 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
7670con2d 627 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
7776imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
7877iffalsed 3612 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
79 iftrue 3607 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8079adantl 277 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8178, 80oveq12d 6025 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
8241addlidd 8304 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
8381, 82eqtrd 2262 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8475, 83jaodan 802 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8561, 84syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8685sumeq2dv 11887 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
8744, 57, 863eqtr2rd 2269 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wral 2508  cun 3195  cin 3196  wss 3197  c0 3491  ifcif 3602  cfv 5318  (class class class)co 6007  Fincfn 6895  cc 8005  0cc0 8007   + caddc 8010  cz 9454  cuz 9730  Σcsu 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873
This theorem is referenced by:  fsumsplitf  11927  sumpr  11932  sumtp  11933  fsumm1  11935  fsum1p  11937  fsumsplitsnun  11938  fsum2dlemstep  11953  fsumconst  11973  fsumlessfi  11979  fsumabs  11984  fsumiun  11996  mertenslemi1  12054  bitsinv1  12481  fsumcncntop  15249  dvmptfsum  15407  perfectlem2  15682  lgsquadlem2  15765  cvgcmp2nlemabs  16430
  Copyright terms: Public domain W3C validator