ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit GIF version

Theorem fsumsplit 11433
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 3313 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 3221 . . . 4 (𝜑𝐴𝑈)
4 simpr 110 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → 𝑥𝐴)
54orcd 734 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
6 fsumsplit.1 . . . . . . . . . 10 (𝜑 → (𝐴𝐵) = ∅)
7 disjel 3492 . . . . . . . . . . . . 13 (((𝐴𝐵) = ∅ ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
87ex 115 . . . . . . . . . . . 12 ((𝐴𝐵) = ∅ → (𝑥𝐴 → ¬ 𝑥𝐵))
98con2d 625 . . . . . . . . . . 11 ((𝐴𝐵) = ∅ → (𝑥𝐵 → ¬ 𝑥𝐴))
109imp 124 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
116, 10sylan 283 . . . . . . . . 9 ((𝜑𝑥𝐵) → ¬ 𝑥𝐴)
1211adantlr 477 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1312olcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐵) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
142eleq2d 2259 . . . . . . . . 9 (𝜑 → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
1514biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥 ∈ (𝐴𝐵))
16 elun 3291 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1715, 16sylib 122 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑥𝐴𝑥𝐵))
185, 13, 17mpjaodan 799 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
19 df-dc 836 . . . . . 6 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
2018, 19sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐴)
2120ralrimiva 2563 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐴)
223sselda 3170 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
23 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2422, 23syldan 282 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524ralrimiva 2563 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
26 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
2726olcd 735 . . . 4 (𝜑 → ((0 ∈ ℤ ∧ 𝑈 ⊆ (ℤ‘0) ∧ ∀𝑥 ∈ (ℤ‘0)DECID 𝑥𝑈) ∨ 𝑈 ∈ Fin))
283, 21, 25, 27isumss2 11419 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
29 ssun2 3314 . . . . 5 𝐵 ⊆ (𝐴𝐵)
3029, 2sseqtrrid 3221 . . . 4 (𝜑𝐵𝑈)
316ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝐴𝐵) = ∅)
3231, 7sylancom 420 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
3332olcd 735 . . . . . . 7 (((𝜑𝑥𝑈) ∧ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3417orcanai 929 . . . . . . . 8 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → 𝑥𝐵)
3534orcd 734 . . . . . . 7 (((𝜑𝑥𝑈) ∧ ¬ 𝑥𝐴) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3633, 35, 18mpjaodan 799 . . . . . 6 ((𝜑𝑥𝑈) → (𝑥𝐵 ∨ ¬ 𝑥𝐵))
37 df-dc 836 . . . . . 6 (DECID 𝑥𝐵 ↔ (𝑥𝐵 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 134 . . . . 5 ((𝜑𝑥𝑈) → DECID 𝑥𝐵)
3938ralrimiva 2563 . . . 4 (𝜑 → ∀𝑥𝑈 DECID 𝑥𝐵)
4030sselda 3170 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
4140, 23syldan 282 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4241ralrimiva 2563 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
4330, 39, 42, 27isumss2 11419 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
4428, 43oveq12d 5909 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
45 0cnd 7968 . . . 4 ((𝜑𝑘𝑈) → 0 ∈ ℂ)
46 eleq1w 2250 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐴𝑘𝐴))
4746dcbid 839 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐴DECID 𝑘𝐴))
4821adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐴)
49 simpr 110 . . . . 5 ((𝜑𝑘𝑈) → 𝑘𝑈)
5047, 48, 49rspcdva 2861 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
5123, 45, 50ifcldcd 3585 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
52 eleq1w 2250 . . . . . 6 (𝑥 = 𝑘 → (𝑥𝐵𝑘𝐵))
5352dcbid 839 . . . . 5 (𝑥 = 𝑘 → (DECID 𝑥𝐵DECID 𝑘𝐵))
5439adantr 276 . . . . 5 ((𝜑𝑘𝑈) → ∀𝑥𝑈 DECID 𝑥𝐵)
5553, 54, 49rspcdva 2861 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
5623, 45, 55ifcldcd 3585 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5726, 51, 56fsumadd 11432 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
582eleq2d 2259 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
59 elun 3291 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6058, 59bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
6160biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
62 iftrue 3554 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
6362adantl 277 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
64 noel 3441 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
656eleq2d 2259 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
66 elin 3333 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6765, 66bitr3di 195 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
6864, 67mtbii 675 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
69 imnan 691 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
7068, 69sylibr 134 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
7170imp 124 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7271iffalsed 3559 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
7363, 72oveq12d 5909 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
7424addid1d 8124 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
7573, 74eqtrd 2222 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
7670con2d 625 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
7776imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
7877iffalsed 3559 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
79 iftrue 3554 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8079adantl 277 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
8178, 80oveq12d 5909 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
8241addid2d 8125 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
8381, 82eqtrd 2222 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8475, 83jaodan 798 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8561, 84syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
8685sumeq2dv 11394 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
8744, 57, 863eqtr2rd 2229 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  wral 2468  cun 3142  cin 3143  wss 3144  c0 3437  ifcif 3549  cfv 5231  (class class class)co 5891  Fincfn 6758  cc 7827  0cc0 7829   + caddc 7832  cz 9271  cuz 9546  Σcsu 11379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-seqfrec 10464  df-exp 10538  df-ihash 10774  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-clim 11305  df-sumdc 11380
This theorem is referenced by:  fsumsplitf  11434  sumpr  11439  sumtp  11440  fsumm1  11442  fsum1p  11444  fsumsplitsnun  11445  fsum2dlemstep  11460  fsumconst  11480  fsumlessfi  11486  fsumabs  11491  fsumiun  11503  mertenslemi1  11561  fsumcncntop  14453  cvgcmp2nlemabs  15178
  Copyright terms: Public domain W3C validator