ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc GIF version

Theorem sumsplitdc 11818
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplitdc.a ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
sumsplitdc.b ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplitdc (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplitdc.a . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
3 sumsplitdc.b . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
42, 3dcun 3574 . . . 4 ((𝜑𝑘𝑍) → DECID 𝑘 ∈ (𝐴𝐵))
54ralrimiva 2580 . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘 ∈ (𝐴𝐵))
6 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
76ralrimiva 2580 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
8 sumsplit.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 sumsplit.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3253 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2273 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 735 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 837 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 134 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝑍)
1817ralrimiva 2580 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1180 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 735 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 5, 7, 20isumss2 11779 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
22 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
23 elun1 3344 . . . . . . 7 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
2423, 6sylan2 286 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524adantlr 477 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
26 0cnd 8085 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
2725, 26, 2ifcldadc 3605 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
28 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
29 elun2 3345 . . . . . . 7 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
3029, 6sylan2 286 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3130adantlr 477 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
32 0cnd 8085 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐵) → 0 ∈ ℂ)
3331, 32, 3ifcldadc 3605 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
369, 8, 22, 27, 28, 33, 34, 35isumadd 11817 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3724addridd 8241 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 iftrue 3580 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3938adantl 277 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
40 noel 3468 . . . . . . . . . . . 12 ¬ 𝑘 ∈ ∅
41 sumsplit.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
4241eleq2d 2276 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
43 elin 3360 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
4442, 43bitr3di 195 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4540, 44mtbii 676 . . . . . . . . . . 11 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
46 imnan 692 . . . . . . . . . . 11 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4745, 46sylibr 134 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4847imp 124 . . . . . . . . 9 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4948iffalsed 3585 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
5039, 49oveq12d 5975 . . . . . . 7 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
51 iftrue 3580 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5223, 51syl 14 . . . . . . . 8 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5352adantl 277 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5437, 50, 533eqtr4rd 2250 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5554adantlr 477 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5633adantr 276 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5756addlidd 8242 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
58 iffalse 3583 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
5958adantl 277 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
6059oveq1d 5972 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
6160adantlr 477 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
62 elun 3318 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
63 biorf 746 . . . . . . . . . 10 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
6462, 63bitr4id 199 . . . . . . . . 9 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6564adantl 277 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6665ifbid 3597 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6766adantlr 477 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6857, 61, 673eqtr4rd 2250 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
69 exmiddc 838 . . . . . 6 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
702, 69syl 14 . . . . 5 ((𝜑𝑘𝑍) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
7155, 68, 70mpjaodan 800 . . . 4 ((𝜑𝑘𝑍) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
7271sumeq2dv 11754 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
731unssad 3354 . . . . 5 (𝜑𝐴𝑍)
742ralrimiva 2580 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
7524ralrimiva 2580 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
7673, 74, 75, 20isumss2 11779 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
771unssbd 3355 . . . . 5 (𝜑𝐵𝑍)
783ralrimiva 2580 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐵)
7930ralrimiva 2580 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
8077, 78, 79, 20isumss2 11779 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
8176, 80oveq12d 5975 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
8236, 72, 813eqtr4rd 2250 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
8321, 82eqtr4d 2242 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wral 2485  cun 3168  cin 3169  wss 3170  c0 3464  ifcif 3575  dom cdm 4683  cfv 5280  (class class class)co 5957  Fincfn 6840  cc 7943  0cc0 7945   + caddc 7948  cz 9392  cuz 9668  seqcseq 10614  cli 11664  Σcsu 11739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator