ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc GIF version

Theorem sumsplitdc 11233
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplitdc.a ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
sumsplitdc.b ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplitdc (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplitdc.a . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
3 sumsplitdc.b . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
42, 3dcun 3478 . . . 4 ((𝜑𝑘𝑍) → DECID 𝑘 ∈ (𝐴𝐵))
54ralrimiva 2508 . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘 ∈ (𝐴𝐵))
6 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
76ralrimiva 2508 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
8 sumsplit.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 sumsplit.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3158 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2207 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 132 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 723 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 821 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 133 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716adantl 275 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝑍)
1817ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1162 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 723 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 5, 7, 20isumss2 11194 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
22 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
23 elun1 3248 . . . . . . 7 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
2423, 6sylan2 284 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524adantlr 469 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
26 0cnd 7783 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
2725, 26, 2ifcldadc 3506 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
28 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
29 elun2 3249 . . . . . . 7 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
3029, 6sylan2 284 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3130adantlr 469 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
32 0cnd 7783 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐵) → 0 ∈ ℂ)
3331, 32, 3ifcldadc 3506 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
369, 8, 22, 27, 28, 33, 34, 35isumadd 11232 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3724addid1d 7935 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 iftrue 3484 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3938adantl 275 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
40 noel 3372 . . . . . . . . . . . 12 ¬ 𝑘 ∈ ∅
41 sumsplit.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
4241eleq2d 2210 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
43 elin 3264 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
4442, 43bitr3di 194 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4540, 44mtbii 664 . . . . . . . . . . 11 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
46 imnan 680 . . . . . . . . . . 11 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4745, 46sylibr 133 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4847imp 123 . . . . . . . . 9 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4948iffalsed 3489 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
5039, 49oveq12d 5800 . . . . . . 7 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
51 iftrue 3484 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5223, 51syl 14 . . . . . . . 8 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5352adantl 275 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5437, 50, 533eqtr4rd 2184 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5554adantlr 469 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5633adantr 274 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5756addid2d 7936 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
58 iffalse 3487 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
5958adantl 275 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
6059oveq1d 5797 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
6160adantlr 469 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
62 elun 3222 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
63 biorf 734 . . . . . . . . . 10 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
6462, 63bitr4id 198 . . . . . . . . 9 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6564adantl 275 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6665ifbid 3498 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6766adantlr 469 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6857, 61, 673eqtr4rd 2184 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
69 exmiddc 822 . . . . . 6 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
702, 69syl 14 . . . . 5 ((𝜑𝑘𝑍) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
7155, 68, 70mpjaodan 788 . . . 4 ((𝜑𝑘𝑍) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
7271sumeq2dv 11169 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
731unssad 3258 . . . . 5 (𝜑𝐴𝑍)
742ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
7524ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
7673, 74, 75, 20isumss2 11194 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
771unssbd 3259 . . . . 5 (𝜑𝐵𝑍)
783ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐵)
7930ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
8077, 78, 79, 20isumss2 11194 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
8176, 80oveq12d 5800 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
8236, 72, 813eqtr4rd 2184 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
8321, 82eqtr4d 2176 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wcel 1481  wral 2417  cun 3074  cin 3075  wss 3076  c0 3368  ifcif 3479  dom cdm 4547  cfv 5131  (class class class)co 5782  Fincfn 6642  cc 7642  0cc0 7644   + caddc 7647  cz 9078  cuz 9350  seqcseq 10249  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator