ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc GIF version

Theorem sumsplitdc 10813
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplitdc.a ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
sumsplitdc.b ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplitdc (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplitdc.a . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
3 sumsplitdc.b . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
42, 3dcun 3390 . . . 4 ((𝜑𝑘𝑍) → DECID 𝑘 ∈ (𝐴𝐵))
54ralrimiva 2446 . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘 ∈ (𝐴𝐵))
6 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
76ralrimiva 2446 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
8 sumsplit.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 sumsplit.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3080 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2154 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 131 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 687 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 781 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 132 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716adantl 271 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝑍)
1817ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1123 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 687 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 5, 7, 20isumss2 10772 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
22 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
23 elun1 3167 . . . . . . 7 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
2423, 6sylan2 280 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524adantlr 461 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
26 0cnd 7471 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
2725, 26, 2ifcldadc 3418 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
28 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
29 elun2 3168 . . . . . . 7 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
3029, 6sylan2 280 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3130adantlr 461 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
32 0cnd 7471 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐵) → 0 ∈ ℂ)
3331, 32, 3ifcldadc 3418 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
369, 8, 22, 27, 28, 33, 34, 35isumadd 10812 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3724addid1d 7621 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 iftrue 3396 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3938adantl 271 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
40 noel 3290 . . . . . . . . . . . 12 ¬ 𝑘 ∈ ∅
41 elin 3183 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
42 sumsplit.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
4342eleq2d 2157 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
4441, 43syl5rbbr 193 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4540, 44mtbii 634 . . . . . . . . . . 11 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
46 imnan 659 . . . . . . . . . . 11 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4745, 46sylibr 132 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4847imp 122 . . . . . . . . 9 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4948iffalsed 3401 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
5039, 49oveq12d 5662 . . . . . . 7 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
51 iftrue 3396 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5223, 51syl 14 . . . . . . . 8 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5352adantl 271 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5437, 50, 533eqtr4rd 2131 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5554adantlr 461 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5633adantr 270 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5756addid2d 7622 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
58 iffalse 3399 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
5958adantl 271 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
6059oveq1d 5659 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
6160adantlr 461 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
62 biorf 698 . . . . . . . . . 10 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
63 elun 3141 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
6462, 63syl6rbbr 197 . . . . . . . . 9 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6564adantl 271 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6665ifbid 3410 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6766adantlr 461 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6857, 61, 673eqtr4rd 2131 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
69 exmiddc 782 . . . . . 6 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
702, 69syl 14 . . . . 5 ((𝜑𝑘𝑍) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
7155, 68, 70mpjaodan 747 . . . 4 ((𝜑𝑘𝑍) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
7271sumeq2dv 10744 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
731unssad 3177 . . . . 5 (𝜑𝐴𝑍)
742ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
7524ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
7673, 74, 75, 20isumss2 10772 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
771unssbd 3178 . . . . 5 (𝜑𝐵𝑍)
783ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐵)
7930ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
8077, 78, 79, 20isumss2 10772 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
8176, 80oveq12d 5662 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
8236, 72, 813eqtr4rd 2131 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
8321, 82eqtr4d 2123 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 664  DECID wdc 780  w3a 924   = wceq 1289  wcel 1438  wral 2359  cun 2997  cin 2998  wss 2999  c0 3286  ifcif 3391  dom cdm 4436  cfv 5010  (class class class)co 5644  Fincfn 6447  cc 7338  0cc0 7340   + caddc 7343  cz 8740  cuz 9009  seqcseq 9840  cli 10653  Σcsu 10729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-mulrcl 7434  ax-addcom 7435  ax-mulcom 7436  ax-addass 7437  ax-mulass 7438  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-1rid 7442  ax-0id 7443  ax-rnegex 7444  ax-precex 7445  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-apti 7450  ax-pre-ltadd 7451  ax-pre-mulgt0 7452  ax-pre-mulext 7453  ax-arch 7454  ax-caucvg 7455
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3392  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-po 4121  df-iso 4122  df-iord 4191  df-on 4193  df-ilim 4194  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-isom 5019  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-frec 6148  df-1o 6173  df-oadd 6177  df-er 6282  df-en 6448  df-dom 6449  df-fin 6450  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-reap 8042  df-ap 8049  df-div 8130  df-inn 8413  df-2 8471  df-3 8472  df-4 8473  df-n0 8664  df-z 8741  df-uz 9010  df-q 9095  df-rp 9125  df-fz 9415  df-fzo 9542  df-iseq 9841  df-seq3 9842  df-exp 9943  df-ihash 10172  df-cj 10264  df-re 10265  df-im 10266  df-rsqrt 10419  df-abs 10420  df-clim 10654  df-isum 10730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator