ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc GIF version

Theorem sumsplitdc 11395
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplitdc.a ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
sumsplitdc.b ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplitdc (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplitdc.a . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
3 sumsplitdc.b . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
42, 3dcun 3525 . . . 4 ((𝜑𝑘𝑍) → DECID 𝑘 ∈ (𝐴𝐵))
54ralrimiva 2543 . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘 ∈ (𝐴𝐵))
6 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
76ralrimiva 2543 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
8 sumsplit.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 sumsplit.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3203 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2237 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 132 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 728 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 830 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 133 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716adantl 275 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝑍)
1817ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1172 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 728 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 5, 7, 20isumss2 11356 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
22 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
23 elun1 3294 . . . . . . 7 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
2423, 6sylan2 284 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524adantlr 474 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
26 0cnd 7913 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
2725, 26, 2ifcldadc 3555 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
28 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
29 elun2 3295 . . . . . . 7 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
3029, 6sylan2 284 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3130adantlr 474 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
32 0cnd 7913 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐵) → 0 ∈ ℂ)
3331, 32, 3ifcldadc 3555 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
369, 8, 22, 27, 28, 33, 34, 35isumadd 11394 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3724addid1d 8068 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 iftrue 3531 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3938adantl 275 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
40 noel 3418 . . . . . . . . . . . 12 ¬ 𝑘 ∈ ∅
41 sumsplit.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
4241eleq2d 2240 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
43 elin 3310 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
4442, 43bitr3di 194 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4540, 44mtbii 669 . . . . . . . . . . 11 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
46 imnan 685 . . . . . . . . . . 11 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4745, 46sylibr 133 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4847imp 123 . . . . . . . . 9 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4948iffalsed 3536 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
5039, 49oveq12d 5871 . . . . . . 7 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
51 iftrue 3531 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5223, 51syl 14 . . . . . . . 8 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5352adantl 275 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5437, 50, 533eqtr4rd 2214 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5554adantlr 474 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5633adantr 274 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5756addid2d 8069 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
58 iffalse 3534 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
5958adantl 275 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
6059oveq1d 5868 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
6160adantlr 474 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
62 elun 3268 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
63 biorf 739 . . . . . . . . . 10 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
6462, 63bitr4id 198 . . . . . . . . 9 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6564adantl 275 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6665ifbid 3547 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6766adantlr 474 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6857, 61, 673eqtr4rd 2214 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
69 exmiddc 831 . . . . . 6 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
702, 69syl 14 . . . . 5 ((𝜑𝑘𝑍) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
7155, 68, 70mpjaodan 793 . . . 4 ((𝜑𝑘𝑍) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
7271sumeq2dv 11331 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
731unssad 3304 . . . . 5 (𝜑𝐴𝑍)
742ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
7524ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
7673, 74, 75, 20isumss2 11356 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
771unssbd 3305 . . . . 5 (𝜑𝐵𝑍)
783ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐵)
7930ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
8077, 78, 79, 20isumss2 11356 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
8176, 80oveq12d 5871 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
8236, 72, 813eqtr4rd 2214 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
8321, 82eqtr4d 2206 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wral 2448  cun 3119  cin 3120  wss 3121  c0 3414  ifcif 3526  dom cdm 4611  cfv 5198  (class class class)co 5853  Fincfn 6718  cc 7772  0cc0 7774   + caddc 7777  cz 9212  cuz 9487  seqcseq 10401  cli 11241  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator