ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsplitdc GIF version

Theorem sumsplitdc 11373
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplitdc.a ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
sumsplitdc.b ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplitdc (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplitdc
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplitdc.a . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐴)
3 sumsplitdc.b . . . . 5 ((𝜑𝑘𝑍) → DECID 𝑘𝐵)
42, 3dcun 3519 . . . 4 ((𝜑𝑘𝑍) → DECID 𝑘 ∈ (𝐴𝐵))
54ralrimiva 2539 . . 3 (𝜑 → ∀𝑘𝑍 DECID 𝑘 ∈ (𝐴𝐵))
6 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
76ralrimiva 2539 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
8 sumsplit.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
9 sumsplit.1 . . . . . . 7 𝑍 = (ℤ𝑀)
109eqimssi 3198 . . . . . 6 𝑍 ⊆ (ℤ𝑀)
1110a1i 9 . . . . 5 (𝜑𝑍 ⊆ (ℤ𝑀))
129eleq2i 2233 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1312biimpri 132 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1413orcd 723 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑍 ∨ ¬ 𝑘𝑍))
15 df-dc 825 . . . . . . . 8 (DECID 𝑘𝑍 ↔ (𝑘𝑍 ∨ ¬ 𝑘𝑍))
1614, 15sylibr 133 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → DECID 𝑘𝑍)
1716adantl 275 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝑍)
1817ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍)
198, 11, 183jca 1167 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍))
2019orcd 723 . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ (ℤ𝑀) ∧ ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝑍) ∨ 𝑍 ∈ Fin))
211, 5, 7, 20isumss2 11334 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
22 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
23 elun1 3289 . . . . . . 7 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
2423, 6sylan2 284 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2524adantlr 469 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
26 0cnd 7892 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
2725, 26, 2ifcldadc 3549 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
28 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
29 elun2 3290 . . . . . . 7 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
3029, 6sylan2 284 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3130adantlr 469 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
32 0cnd 7892 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐵) → 0 ∈ ℂ)
3331, 32, 3ifcldadc 3549 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
369, 8, 22, 27, 28, 33, 34, 35isumadd 11372 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3724addid1d 8047 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 iftrue 3525 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3938adantl 275 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
40 noel 3413 . . . . . . . . . . . 12 ¬ 𝑘 ∈ ∅
41 sumsplit.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
4241eleq2d 2236 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
43 elin 3305 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
4442, 43bitr3di 194 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4540, 44mtbii 664 . . . . . . . . . . 11 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
46 imnan 680 . . . . . . . . . . 11 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4745, 46sylibr 133 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4847imp 123 . . . . . . . . 9 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4948iffalsed 3530 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
5039, 49oveq12d 5860 . . . . . . 7 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
51 iftrue 3525 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5223, 51syl 14 . . . . . . . 8 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5352adantl 275 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5437, 50, 533eqtr4rd 2209 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5554adantlr 469 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5633adantr 274 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
5756addid2d 8048 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
58 iffalse 3528 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
5958adantl 275 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
6059oveq1d 5857 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
6160adantlr 469 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
62 elun 3263 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
63 biorf 734 . . . . . . . . . 10 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
6462, 63bitr4id 198 . . . . . . . . 9 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6564adantl 275 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6665ifbid 3541 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6766adantlr 469 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6857, 61, 673eqtr4rd 2209 . . . . 5 (((𝜑𝑘𝑍) ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
69 exmiddc 826 . . . . . 6 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
702, 69syl 14 . . . . 5 ((𝜑𝑘𝑍) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
7155, 68, 70mpjaodan 788 . . . 4 ((𝜑𝑘𝑍) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
7271sumeq2dv 11309 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
731unssad 3299 . . . . 5 (𝜑𝐴𝑍)
742ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)
7524ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
7673, 74, 75, 20isumss2 11334 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
771unssbd 3300 . . . . 5 (𝜑𝐵𝑍)
783ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐵)
7930ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
8077, 78, 79, 20isumss2 11334 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
8176, 80oveq12d 5860 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
8236, 72, 813eqtr4rd 2209 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
8321, 82eqtr4d 2201 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wral 2444  cun 3114  cin 3115  wss 3116  c0 3409  ifcif 3520  dom cdm 4604  cfv 5188  (class class class)co 5842  Fincfn 6706  cc 7751  0cc0 7753   + caddc 7756  cz 9191  cuz 9466  seqcseq 10380  cli 11219  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator