Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtoi | GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 653 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: mtbii 664 mtbiri 665 pwnss 4138 nsuceq0g 4396 abnex 4425 reg2exmidlema 4511 ordsuc 4540 onnmin 4545 ssnel 4546 ordtri2or2exmid 4548 ontri2orexmidim 4549 reg3exmidlemwe 4556 acexmidlemab 5836 reldmtpos 6221 dmtpos 6224 2pwuninelg 6251 onunsnss 6882 snon0 6901 nninfisol 7097 exmidomni 7106 pr2ne 7148 ltexprlemdisj 7547 recexprlemdisj 7571 caucvgprlemnkj 7607 caucvgprprlemnkltj 7630 caucvgprprlemnkeqj 7631 caucvgprprlemnjltk 7632 inelr 8482 rimul 8483 recgt0 8745 zfz1iso 10754 isprm2 12049 nprmdvds1 12072 divgcdodd 12075 coprm 12076 coseq0q4123 13395 pwle2 13878 exmid1stab 13880 nninfalllem1 13888 nninfall 13889 nninfsellemqall 13895 |
Copyright terms: Public domain | W3C validator |