![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtoi | GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: mtbii 675 mtbiri 676 pwnss 4188 exmid1stab 4237 nsuceq0g 4449 abnex 4478 reg2exmidlema 4566 ordsuc 4595 onnmin 4600 ssnel 4601 ordtri2or2exmid 4603 ontri2orexmidim 4604 reg3exmidlemwe 4611 acexmidlemab 5912 reldmtpos 6306 dmtpos 6309 2pwuninelg 6336 onunsnss 6973 snon0 6994 nninfisol 7192 exmidomni 7201 pr2ne 7252 ltexprlemdisj 7666 recexprlemdisj 7690 caucvgprlemnkj 7726 caucvgprprlemnkltj 7749 caucvgprprlemnkeqj 7750 caucvgprprlemnjltk 7751 inelr 8603 rimul 8604 recgt0 8869 zfz1iso 10912 isprm2 12255 nprmdvds1 12278 divgcdodd 12281 coprm 12282 coseq0q4123 14969 pwle2 15489 nninfalllem1 15498 nninfall 15499 nninfsellemqall 15505 |
Copyright terms: Public domain | W3C validator |