| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 675 mtbiri 676 pwnss 4202 exmid1stab 4251 nsuceq0g 4464 abnex 4493 reg2exmidlema 4581 ordsuc 4610 onnmin 4615 ssnel 4616 ordtri2or2exmid 4618 ontri2orexmidim 4619 reg3exmidlemwe 4626 acexmidlemab 5937 reldmtpos 6338 dmtpos 6341 2pwuninelg 6368 onunsnss 7013 snon0 7036 nninfisol 7234 exmidomni 7243 pr2ne 7299 ltexprlemdisj 7718 recexprlemdisj 7742 caucvgprlemnkj 7778 caucvgprprlemnkltj 7801 caucvgprprlemnkeqj 7802 caucvgprprlemnjltk 7803 inelr 8656 rimul 8657 recgt0 8922 zfz1iso 10984 isprm2 12381 nprmdvds1 12404 divgcdodd 12407 coprm 12408 coseq0q4123 15248 lgsquad2lem2 15501 pwle2 15868 nninfalllem1 15878 nninfall 15879 nninfsellemqall 15885 |
| Copyright terms: Public domain | W3C validator |