Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtoi | GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 658 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 609 ax-in2 610 |
This theorem is referenced by: mtbii 669 mtbiri 670 pwnss 4145 nsuceq0g 4403 abnex 4432 reg2exmidlema 4518 ordsuc 4547 onnmin 4552 ssnel 4553 ordtri2or2exmid 4555 ontri2orexmidim 4556 reg3exmidlemwe 4563 acexmidlemab 5847 reldmtpos 6232 dmtpos 6235 2pwuninelg 6262 onunsnss 6894 snon0 6913 nninfisol 7109 exmidomni 7118 pr2ne 7169 ltexprlemdisj 7568 recexprlemdisj 7592 caucvgprlemnkj 7628 caucvgprprlemnkltj 7651 caucvgprprlemnkeqj 7652 caucvgprprlemnjltk 7653 inelr 8503 rimul 8504 recgt0 8766 zfz1iso 10776 isprm2 12071 nprmdvds1 12094 divgcdodd 12097 coprm 12098 coseq0q4123 13549 pwle2 14031 exmid1stab 14033 nninfalllem1 14041 nninfall 14042 nninfsellemqall 14048 |
Copyright terms: Public domain | W3C validator |