| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 667 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mtbii 678 mtbiri 679 pwnss 4242 exmid1stab 4291 nsuceq0g 4508 abnex 4537 reg2exmidlema 4625 ordsuc 4654 onnmin 4659 ssnel 4660 ordtri2or2exmid 4662 ontri2orexmidim 4663 reg3exmidlemwe 4670 acexmidlemab 5994 reldmtpos 6397 dmtpos 6400 2pwuninelg 6427 onunsnss 7075 snon0 7098 nninfisol 7296 exmidomni 7305 pr2ne 7361 ltexprlemdisj 7789 recexprlemdisj 7813 caucvgprlemnkj 7849 caucvgprprlemnkltj 7872 caucvgprprlemnkeqj 7873 caucvgprprlemnjltk 7874 inelr 8727 rimul 8728 recgt0 8993 zfz1iso 11058 isprm2 12634 nprmdvds1 12657 divgcdodd 12660 coprm 12661 coseq0q4123 15502 lgsquad2lem2 15755 umgrnloop0 15911 umgrislfupgrenlem 15922 lfgrnloopen 15925 pwle2 16323 nninfalllem1 16333 nninfall 16334 nninfsellemqall 16340 |
| Copyright terms: Public domain | W3C validator |