Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtoi | GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 663 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtbii 674 mtbiri 675 pwnss 4154 nsuceq0g 4412 abnex 4441 reg2exmidlema 4527 ordsuc 4556 onnmin 4561 ssnel 4562 ordtri2or2exmid 4564 ontri2orexmidim 4565 reg3exmidlemwe 4572 acexmidlemab 5859 reldmtpos 6244 dmtpos 6247 2pwuninelg 6274 onunsnss 6906 snon0 6925 nninfisol 7121 exmidomni 7130 pr2ne 7181 ltexprlemdisj 7580 recexprlemdisj 7604 caucvgprlemnkj 7640 caucvgprprlemnkltj 7663 caucvgprprlemnkeqj 7664 caucvgprprlemnjltk 7665 inelr 8515 rimul 8516 recgt0 8780 zfz1iso 10789 isprm2 12084 nprmdvds1 12107 divgcdodd 12110 coprm 12111 coseq0q4123 13835 pwle2 14317 exmid1stab 14319 nninfalllem1 14327 nninfall 14328 nninfsellemqall 14334 |
Copyright terms: Public domain | W3C validator |