| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 675 mtbiri 676 pwnss 4193 exmid1stab 4242 nsuceq0g 4454 abnex 4483 reg2exmidlema 4571 ordsuc 4600 onnmin 4605 ssnel 4606 ordtri2or2exmid 4608 ontri2orexmidim 4609 reg3exmidlemwe 4616 acexmidlemab 5919 reldmtpos 6320 dmtpos 6323 2pwuninelg 6350 onunsnss 6987 snon0 7010 nninfisol 7208 exmidomni 7217 pr2ne 7273 ltexprlemdisj 7692 recexprlemdisj 7716 caucvgprlemnkj 7752 caucvgprprlemnkltj 7775 caucvgprprlemnkeqj 7776 caucvgprprlemnjltk 7777 inelr 8630 rimul 8631 recgt0 8896 zfz1iso 10952 isprm2 12312 nprmdvds1 12335 divgcdodd 12338 coprm 12339 coseq0q4123 15178 lgsquad2lem2 15431 pwle2 15753 nninfalllem1 15763 nninfall 15764 nninfsellemqall 15770 |
| Copyright terms: Public domain | W3C validator |