![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtoi | GIF version |
Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
Ref | Expression |
---|---|
mtoi.1 | ⊢ ¬ 𝜒 |
mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtoi | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mtod 663 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtbii 674 mtbiri 675 pwnss 4160 exmid1stab 4209 nsuceq0g 4419 abnex 4448 reg2exmidlema 4534 ordsuc 4563 onnmin 4568 ssnel 4569 ordtri2or2exmid 4571 ontri2orexmidim 4572 reg3exmidlemwe 4579 acexmidlemab 5869 reldmtpos 6254 dmtpos 6257 2pwuninelg 6284 onunsnss 6916 snon0 6935 nninfisol 7131 exmidomni 7140 pr2ne 7191 ltexprlemdisj 7605 recexprlemdisj 7629 caucvgprlemnkj 7665 caucvgprprlemnkltj 7688 caucvgprprlemnkeqj 7689 caucvgprprlemnjltk 7690 inelr 8541 rimul 8542 recgt0 8807 zfz1iso 10821 isprm2 12117 nprmdvds1 12140 divgcdodd 12143 coprm 12144 coseq0q4123 14258 pwle2 14751 nninfalllem1 14760 nninfall 14761 nninfsellemqall 14767 |
Copyright terms: Public domain | W3C validator |