| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 665 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 676 mtbiri 677 pwnss 4203 exmid1stab 4252 nsuceq0g 4465 abnex 4494 reg2exmidlema 4582 ordsuc 4611 onnmin 4616 ssnel 4617 ordtri2or2exmid 4619 ontri2orexmidim 4620 reg3exmidlemwe 4627 acexmidlemab 5938 reldmtpos 6339 dmtpos 6342 2pwuninelg 6369 onunsnss 7014 snon0 7037 nninfisol 7235 exmidomni 7244 pr2ne 7300 ltexprlemdisj 7719 recexprlemdisj 7743 caucvgprlemnkj 7779 caucvgprprlemnkltj 7802 caucvgprprlemnkeqj 7803 caucvgprprlemnjltk 7804 inelr 8657 rimul 8658 recgt0 8923 zfz1iso 10986 isprm2 12439 nprmdvds1 12462 divgcdodd 12465 coprm 12466 coseq0q4123 15306 lgsquad2lem2 15559 pwle2 15935 nninfalllem1 15945 nninfall 15946 nninfsellemqall 15952 |
| Copyright terms: Public domain | W3C validator |