| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 664 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 675 mtbiri 676 pwnss 4192 exmid1stab 4241 nsuceq0g 4453 abnex 4482 reg2exmidlema 4570 ordsuc 4599 onnmin 4604 ssnel 4605 ordtri2or2exmid 4607 ontri2orexmidim 4608 reg3exmidlemwe 4615 acexmidlemab 5916 reldmtpos 6311 dmtpos 6314 2pwuninelg 6341 onunsnss 6978 snon0 7001 nninfisol 7199 exmidomni 7208 pr2ne 7259 ltexprlemdisj 7673 recexprlemdisj 7697 caucvgprlemnkj 7733 caucvgprprlemnkltj 7756 caucvgprprlemnkeqj 7757 caucvgprprlemnjltk 7758 inelr 8611 rimul 8612 recgt0 8877 zfz1iso 10933 isprm2 12285 nprmdvds1 12308 divgcdodd 12311 coprm 12312 coseq0q4123 15070 lgsquad2lem2 15323 pwle2 15643 nninfalllem1 15652 nninfall 15653 nninfsellemqall 15659 |
| Copyright terms: Public domain | W3C validator |