| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtoi | GIF version | ||
| Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994.) (Proof shortened by Wolf Lammen, 15-Sep-2012.) |
| Ref | Expression |
|---|---|
| mtoi.1 | ⊢ ¬ 𝜒 |
| mtoi.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mtoi | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtoi.1 | . . 3 ⊢ ¬ 𝜒 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → ¬ 𝜒) |
| 3 | mtoi.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mtod 665 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mtbii 676 mtbiri 677 pwnss 4214 exmid1stab 4263 nsuceq0g 4478 abnex 4507 reg2exmidlema 4595 ordsuc 4624 onnmin 4629 ssnel 4630 ordtri2or2exmid 4632 ontri2orexmidim 4633 reg3exmidlemwe 4640 acexmidlemab 5956 reldmtpos 6357 dmtpos 6360 2pwuninelg 6387 onunsnss 7035 snon0 7058 nninfisol 7256 exmidomni 7265 pr2ne 7321 ltexprlemdisj 7749 recexprlemdisj 7773 caucvgprlemnkj 7809 caucvgprprlemnkltj 7832 caucvgprprlemnkeqj 7833 caucvgprprlemnjltk 7834 inelr 8687 rimul 8688 recgt0 8953 zfz1iso 11018 isprm2 12524 nprmdvds1 12547 divgcdodd 12550 coprm 12551 coseq0q4123 15391 lgsquad2lem2 15644 umgrislfupgrenlem 15806 lfgrnloopen 15809 pwle2 16107 nninfalllem1 16117 nninfall 16118 nninfsellemqall 16124 |
| Copyright terms: Public domain | W3C validator |