ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd GIF version

Theorem nfovd 5924
Description: Deduction version of bound-variable hypothesis builder nfov 5925. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2 (𝜑𝑥𝐴)
nfovd.3 (𝜑𝑥𝐹)
nfovd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfovd (𝜑𝑥(𝐴𝐹𝐵))

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 5898 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 nfovd.3 . . 3 (𝜑𝑥𝐹)
3 nfovd.2 . . . 4 (𝜑𝑥𝐴)
4 nfovd.4 . . . 4 (𝜑𝑥𝐵)
53, 4nfopd 3810 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
62, 5nffvd 5546 . 2 (𝜑𝑥(𝐹‘⟨𝐴, 𝐵⟩))
71, 6nfcxfrd 2330 1 (𝜑𝑥(𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wnfc 2319  cop 3610  cfv 5235  (class class class)co 5895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5898
This theorem is referenced by:  nfov  5925  nfnegd  8182
  Copyright terms: Public domain W3C validator