Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd GIF version

Theorem nfovd 5800
 Description: Deduction version of bound-variable hypothesis builder nfov 5801. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2 (𝜑𝑥𝐴)
nfovd.3 (𝜑𝑥𝐹)
nfovd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfovd (𝜑𝑥(𝐴𝐹𝐵))

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 5777 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 nfovd.3 . . 3 (𝜑𝑥𝐹)
3 nfovd.2 . . . 4 (𝜑𝑥𝐴)
4 nfovd.4 . . . 4 (𝜑𝑥𝐵)
53, 4nfopd 3722 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
62, 5nffvd 5433 . 2 (𝜑𝑥(𝐹‘⟨𝐴, 𝐵⟩))
71, 6nfcxfrd 2279 1 (𝜑𝑥(𝐴𝐹𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4  Ⅎwnfc 2268  ⟨cop 3530  ‘cfv 5123  (class class class)co 5774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777 This theorem is referenced by:  nfov  5801  nfnegd  7970
 Copyright terms: Public domain W3C validator