![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfovd | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfov 5907. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5880 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
5 | 3, 4 | nfopd 3797 | . . 3 ⊢ (𝜑 → Ⅎ𝑥⟨𝐴, 𝐵⟩) |
6 | 2, 5 | nffvd 5529 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘⟨𝐴, 𝐵⟩)) |
7 | 1, 6 | nfcxfrd 2317 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2306 ⟨cop 3597 ‘cfv 5218 (class class class)co 5877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: nfov 5907 nfnegd 8155 |
Copyright terms: Public domain | W3C validator |