![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfovd | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfov 5925. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5898 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
5 | 3, 4 | nfopd 3810 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
6 | 2, 5 | nffvd 5546 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘〈𝐴, 𝐵〉)) |
7 | 1, 6 | nfcxfrd 2330 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2319 〈cop 3610 ‘cfv 5235 (class class class)co 5895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5898 |
This theorem is referenced by: nfov 5925 nfnegd 8182 |
Copyright terms: Public domain | W3C validator |