ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd GIF version

Theorem nfovd 6029
Description: Deduction version of bound-variable hypothesis builder nfov 6030. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2 (𝜑𝑥𝐴)
nfovd.3 (𝜑𝑥𝐹)
nfovd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfovd (𝜑𝑥(𝐴𝐹𝐵))

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 6003 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 nfovd.3 . . 3 (𝜑𝑥𝐹)
3 nfovd.2 . . . 4 (𝜑𝑥𝐴)
4 nfovd.4 . . . 4 (𝜑𝑥𝐵)
53, 4nfopd 3873 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
62, 5nffvd 5638 . 2 (𝜑𝑥(𝐹‘⟨𝐴, 𝐵⟩))
71, 6nfcxfrd 2370 1 (𝜑𝑥(𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wnfc 2359  cop 3669  cfv 5317  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  nfov  6030  nfnegd  8338
  Copyright terms: Public domain W3C validator