| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfovd | GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfov 5974. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfovd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfovd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
| nfovd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfovd | ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | nfovd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
| 3 | nfovd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfovd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 5 | 3, 4 | nfopd 3836 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
| 6 | 2, 5 | nffvd 5588 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘〈𝐴, 𝐵〉)) |
| 7 | 1, 6 | nfcxfrd 2346 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴𝐹𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnfc 2335 〈cop 3636 ‘cfv 5271 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: nfov 5974 nfnegd 8268 |
| Copyright terms: Public domain | W3C validator |