| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnegd | GIF version | ||
| Description: Deduction version of nfneg 8304. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8281 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | nfcvd 2351 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
| 3 | nfcvd 2351 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
| 4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 2, 3, 4 | nfovd 5996 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
| 6 | 1, 5 | nfcxfrd 2348 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnfc 2337 (class class class)co 5967 0cc0 7960 − cmin 8278 -cneg 8279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 |
| This theorem is referenced by: nfneg 8304 |
| Copyright terms: Public domain | W3C validator |