ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd GIF version

Theorem nfnegd 8303
Description: Deduction version of nfneg 8304. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfnegd (𝜑𝑥-𝐴)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 8281 . 2 -𝐴 = (0 − 𝐴)
2 nfcvd 2351 . . 3 (𝜑𝑥0)
3 nfcvd 2351 . . 3 (𝜑𝑥 − )
4 nfnegd.1 . . 3 (𝜑𝑥𝐴)
52, 3, 4nfovd 5996 . 2 (𝜑𝑥(0 − 𝐴))
61, 5nfcxfrd 2348 1 (𝜑𝑥-𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wnfc 2337  (class class class)co 5967  0cc0 7960  cmin 8278  -cneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-neg 8281
This theorem is referenced by:  nfneg  8304
  Copyright terms: Public domain W3C validator