ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd GIF version

Theorem nfnegd 8094
Description: Deduction version of nfneg 8095. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfnegd (𝜑𝑥-𝐴)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 8072 . 2 -𝐴 = (0 − 𝐴)
2 nfcvd 2309 . . 3 (𝜑𝑥0)
3 nfcvd 2309 . . 3 (𝜑𝑥 − )
4 nfnegd.1 . . 3 (𝜑𝑥𝐴)
52, 3, 4nfovd 5871 . 2 (𝜑𝑥(0 − 𝐴))
61, 5nfcxfrd 2306 1 (𝜑𝑥-𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wnfc 2295  (class class class)co 5842  0cc0 7753  cmin 8069  -cneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-neg 8072
This theorem is referenced by:  nfneg  8095
  Copyright terms: Public domain W3C validator