ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd GIF version

Theorem nfnegd 8268
Description: Deduction version of nfneg 8269. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfnegd (𝜑𝑥-𝐴)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 8246 . 2 -𝐴 = (0 − 𝐴)
2 nfcvd 2349 . . 3 (𝜑𝑥0)
3 nfcvd 2349 . . 3 (𝜑𝑥 − )
4 nfnegd.1 . . 3 (𝜑𝑥𝐴)
52, 3, 4nfovd 5973 . 2 (𝜑𝑥(0 − 𝐴))
61, 5nfcxfrd 2346 1 (𝜑𝑥-𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wnfc 2335  (class class class)co 5944  0cc0 7925  cmin 8243  -cneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-neg 8246
This theorem is referenced by:  nfneg  8269
  Copyright terms: Public domain W3C validator