ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd GIF version

Theorem nfnegd 8338
Description: Deduction version of nfneg 8339. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfnegd (𝜑𝑥-𝐴)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 8316 . 2 -𝐴 = (0 − 𝐴)
2 nfcvd 2373 . . 3 (𝜑𝑥0)
3 nfcvd 2373 . . 3 (𝜑𝑥 − )
4 nfnegd.1 . . 3 (𝜑𝑥𝐴)
52, 3, 4nfovd 6029 . 2 (𝜑𝑥(0 − 𝐴))
61, 5nfcxfrd 2370 1 (𝜑𝑥-𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wnfc 2359  (class class class)co 6000  0cc0 7995  cmin 8313  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-neg 8316
This theorem is referenced by:  nfneg  8339
  Copyright terms: Public domain W3C validator