Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnegd | GIF version |
Description: Deduction version of nfneg 8116. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 8093 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | nfcvd 2313 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
3 | nfcvd 2313 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 2, 3, 4 | nfovd 5882 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
6 | 1, 5 | nfcxfrd 2310 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2299 (class class class)co 5853 0cc0 7774 − cmin 8090 -cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 |
This theorem is referenced by: nfneg 8116 |
Copyright terms: Public domain | W3C validator |