| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfunid | GIF version | ||
| Description: Deduction version of nfuni 3845. (Contributed by NM, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfunid.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfunid | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 3841 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | nfunid.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfvd 1543 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) | |
| 6 | 3, 4, 5 | nfrexdxy 2531 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧) |
| 7 | 2, 6 | nfabd 2359 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧}) |
| 8 | 1, 7 | nfcxfrd 2337 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 {cab 2182 Ⅎwnfc 2326 ∃wrex 2476 ∪ cuni 3839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 |
| This theorem is referenced by: dfnfc2 3857 nfiotadw 5222 |
| Copyright terms: Public domain | W3C validator |