ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunid GIF version

Theorem nfunid 3863
Description: Deduction version of nfuni 3862. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunid (𝜑𝑥 𝐴)

Proof of Theorem nfunid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3858 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfv 1552 . . 3 𝑦𝜑
3 nfv 1552 . . . 4 𝑧𝜑
4 nfunid.3 . . . 4 (𝜑𝑥𝐴)
5 nfvd 1553 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝑧)
63, 4, 5nfrexdxy 2541 . . 3 (𝜑 → Ⅎ𝑥𝑧𝐴 𝑦𝑧)
72, 6nfabd 2369 . 2 (𝜑𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧})
81, 7nfcxfrd 2347 1 (𝜑𝑥 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  {cab 2192  wnfc 2336  wrex 2486   cuni 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-uni 3857
This theorem is referenced by:  dfnfc2  3874  nfiotadw  5244
  Copyright terms: Public domain W3C validator