| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfunid | GIF version | ||
| Description: Deduction version of nfuni 3893. (Contributed by NM, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfunid.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfunid | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 3889 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfv 1574 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | nfunid.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfvd 1575 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) | |
| 6 | 3, 4, 5 | nfrexdxy 2564 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧) |
| 7 | 2, 6 | nfabd 2392 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧}) |
| 8 | 1, 7 | nfcxfrd 2370 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 {cab 2215 Ⅎwnfc 2359 ∃wrex 2509 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3888 |
| This theorem is referenced by: dfnfc2 3905 nfiotadw 5280 |
| Copyright terms: Public domain | W3C validator |