| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfunid | GIF version | ||
| Description: Deduction version of nfuni 3862. (Contributed by NM, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfunid.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfunid | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 3858 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfv 1552 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | nfunid.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfvd 1553 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) | |
| 6 | 3, 4, 5 | nfrexdxy 2541 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧) |
| 7 | 2, 6 | nfabd 2369 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧}) |
| 8 | 1, 7 | nfcxfrd 2347 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 {cab 2192 Ⅎwnfc 2336 ∃wrex 2486 ∪ cuni 3856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-uni 3857 |
| This theorem is referenced by: dfnfc2 3874 nfiotadw 5244 |
| Copyright terms: Public domain | W3C validator |