| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusvnfb | GIF version | ||
| Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| eusvnfb | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvnf 4500 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
| 2 | euex 2084 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) | |
| 3 | id 19 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
| 4 | vex 2775 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | eqeltrrdi 2297 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | sps 1560 | . . . . 5 ⊢ (∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
| 7 | 6 | exlimiv 1621 | . . . 4 ⊢ (∃𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
| 8 | 2, 7 | syl 14 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
| 9 | 1, 8 | jca 306 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| 10 | isset 2778 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 11 | nfcvd 2349 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
| 12 | id 19 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 13 | 11, 12 | nfeqd 2363 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 14 | 13 | nfrd 1543 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
| 15 | 14 | eximdv 1903 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
| 16 | 10, 15 | biimtrid 152 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
| 17 | 16 | imp 124 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃𝑦∀𝑥 𝑦 = 𝐴) |
| 18 | eusv1 4499 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | |
| 19 | 17, 18 | sylibr 134 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃!𝑦∀𝑥 𝑦 = 𝐴) |
| 20 | 9, 19 | impbii 126 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1515 ∃!weu 2054 ∈ wcel 2176 Ⅎwnfc 2335 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sbc 2999 df-csb 3094 |
| This theorem is referenced by: eusv2nf 4503 eusv2 4504 |
| Copyright terms: Public domain | W3C validator |