| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusvnfb | GIF version | ||
| Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| eusvnfb | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvnf 4544 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
| 2 | euex 2107 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) | |
| 3 | id 19 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
| 4 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | eqeltrrdi 2321 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | sps 1583 | . . . . 5 ⊢ (∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
| 7 | 6 | exlimiv 1644 | . . . 4 ⊢ (∃𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
| 8 | 2, 7 | syl 14 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
| 9 | 1, 8 | jca 306 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| 10 | isset 2806 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 11 | nfcvd 2373 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
| 12 | id 19 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 13 | 11, 12 | nfeqd 2387 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 14 | 13 | nfrd 1566 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
| 15 | 14 | eximdv 1926 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
| 16 | 10, 15 | biimtrid 152 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
| 17 | 16 | imp 124 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃𝑦∀𝑥 𝑦 = 𝐴) |
| 18 | eusv1 4543 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | |
| 19 | 17, 18 | sylibr 134 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃!𝑦∀𝑥 𝑦 = 𝐴) |
| 20 | 9, 19 | impbii 126 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∃!weu 2077 ∈ wcel 2200 Ⅎwnfc 2359 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: eusv2nf 4547 eusv2 4548 |
| Copyright terms: Public domain | W3C validator |