ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvnfb GIF version

Theorem eusvnfb 4489
Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusvnfb (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusvnfb
StepHypRef Expression
1 eusvnf 4488 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
2 euex 2075 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴)
3 id 19 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
4 vex 2766 . . . . . . 7 𝑦 ∈ V
53, 4eqeltrrdi 2288 . . . . . 6 (𝑦 = 𝐴𝐴 ∈ V)
65sps 1551 . . . . 5 (∀𝑥 𝑦 = 𝐴𝐴 ∈ V)
76exlimiv 1612 . . . 4 (∃𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
82, 7syl 14 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
91, 8jca 306 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → (𝑥𝐴𝐴 ∈ V))
10 isset 2769 . . . . 5 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
11 nfcvd 2340 . . . . . . . 8 (𝑥𝐴𝑥𝑦)
12 id 19 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
1311, 12nfeqd 2354 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
1413nfrd 1534 . . . . . 6 (𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴))
1514eximdv 1894 . . . . 5 (𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴))
1610, 15biimtrid 152 . . . 4 (𝑥𝐴 → (𝐴 ∈ V → ∃𝑦𝑥 𝑦 = 𝐴))
1716imp 124 . . 3 ((𝑥𝐴𝐴 ∈ V) → ∃𝑦𝑥 𝑦 = 𝐴)
18 eusv1 4487 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
1917, 18sylibr 134 . 2 ((𝑥𝐴𝐴 ∈ V) → ∃!𝑦𝑥 𝑦 = 𝐴)
209, 19impbii 126 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1362   = wceq 1364  wex 1506  ∃!weu 2045  wcel 2167  wnfc 2326  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  eusv2nf  4491  eusv2  4492
  Copyright terms: Public domain W3C validator