ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvnfb GIF version

Theorem eusvnfb 4439
Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusvnfb (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusvnfb
StepHypRef Expression
1 eusvnf 4438 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
2 euex 2049 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴)
3 id 19 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
4 vex 2733 . . . . . . 7 𝑦 ∈ V
53, 4eqeltrrdi 2262 . . . . . 6 (𝑦 = 𝐴𝐴 ∈ V)
65sps 1530 . . . . 5 (∀𝑥 𝑦 = 𝐴𝐴 ∈ V)
76exlimiv 1591 . . . 4 (∃𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
82, 7syl 14 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
91, 8jca 304 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → (𝑥𝐴𝐴 ∈ V))
10 isset 2736 . . . . 5 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
11 nfcvd 2313 . . . . . . . 8 (𝑥𝐴𝑥𝑦)
12 id 19 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
1311, 12nfeqd 2327 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
1413nfrd 1513 . . . . . 6 (𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴))
1514eximdv 1873 . . . . 5 (𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴))
1610, 15syl5bi 151 . . . 4 (𝑥𝐴 → (𝐴 ∈ V → ∃𝑦𝑥 𝑦 = 𝐴))
1716imp 123 . . 3 ((𝑥𝐴𝐴 ∈ V) → ∃𝑦𝑥 𝑦 = 𝐴)
18 eusv1 4437 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
1917, 18sylibr 133 . 2 ((𝑥𝐴𝐴 ∈ V) → ∃!𝑦𝑥 𝑦 = 𝐴)
209, 19impbii 125 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  wnfc 2299  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  eusv2nf  4441  eusv2  4442
  Copyright terms: Public domain W3C validator