![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eusvnfb | GIF version |
Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusvnfb | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusvnf 4455 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
2 | euex 2056 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) | |
3 | id 19 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
4 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | eqeltrrdi 2269 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) |
6 | 5 | sps 1537 | . . . . 5 ⊢ (∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
7 | 6 | exlimiv 1598 | . . . 4 ⊢ (∃𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
8 | 2, 7 | syl 14 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
9 | 1, 8 | jca 306 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
10 | isset 2745 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
11 | nfcvd 2320 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
12 | id 19 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
13 | 11, 12 | nfeqd 2334 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
14 | 13 | nfrd 1520 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
15 | 14 | eximdv 1880 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
16 | 10, 15 | biimtrid 152 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
17 | 16 | imp 124 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃𝑦∀𝑥 𝑦 = 𝐴) |
18 | eusv1 4454 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | |
19 | 17, 18 | sylibr 134 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃!𝑦∀𝑥 𝑦 = 𝐴) |
20 | 9, 19 | impbii 126 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∃!weu 2026 ∈ wcel 2148 Ⅎwnfc 2306 Vcvv 2739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-sbc 2965 df-csb 3060 |
This theorem is referenced by: eusv2nf 4458 eusv2 4459 |
Copyright terms: Public domain | W3C validator |