ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopoveq GIF version

Theorem mpoxopoveq 6208
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypothesis
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
Assertion
Ref Expression
mpoxopoveq (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑛)

Proof of Theorem mpoxopoveq
StepHypRef Expression
1 mpoxopoveq.f . . 3 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21a1i 9 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑}))
3 fveq2 5486 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
4 op1stg 6118 . . . . . 6 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
54adantr 274 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
63, 5sylan9eqr 2221 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ 𝑥 = ⟨𝑉, 𝑊⟩) → (1st𝑥) = 𝑉)
76adantrr 471 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (1st𝑥) = 𝑉)
8 sbceq1a 2960 . . . . . 6 (𝑦 = 𝐾 → (𝜑[𝐾 / 𝑦]𝜑))
98adantl 275 . . . . 5 ((𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾) → (𝜑[𝐾 / 𝑦]𝜑))
109adantl 275 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (𝜑[𝐾 / 𝑦]𝜑))
11 sbceq1a 2960 . . . . . 6 (𝑥 = ⟨𝑉, 𝑊⟩ → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1211adantr 274 . . . . 5 ((𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾) → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1312adantl 275 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1410, 13bitrd 187 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
157, 14rabeqbidv 2721 . 2 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → {𝑛 ∈ (1st𝑥) ∣ 𝜑} = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
16 opexg 4206 . . 3 ((𝑉𝑋𝑊𝑌) → ⟨𝑉, 𝑊⟩ ∈ V)
1716adantr 274 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → ⟨𝑉, 𝑊⟩ ∈ V)
18 simpr 109 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → 𝐾𝑉)
19 rabexg 4125 . . 3 (𝑉𝑋 → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ∈ V)
2019ad2antrr 480 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ∈ V)
21 equid 1689 . . 3 𝑧 = 𝑧
22 nfvd 1517 . . 3 (𝑧 = 𝑧 → Ⅎ𝑥((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉))
2321, 22ax-mp 5 . 2 𝑥((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉)
24 nfvd 1517 . . 3 (𝑧 = 𝑧 → Ⅎ𝑦((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉))
2521, 24ax-mp 5 . 2 𝑦((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉)
26 nfcv 2308 . 2 𝑦𝑉, 𝑊
27 nfcv 2308 . 2 𝑥𝐾
28 nfsbc1v 2969 . . 3 𝑥[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑
29 nfcv 2308 . . 3 𝑥𝑉
3028, 29nfrabxy 2646 . 2 𝑥{𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}
31 nfsbc1v 2969 . . . 4 𝑦[𝐾 / 𝑦]𝜑
3226, 31nfsbc 2971 . . 3 𝑦[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑
33 nfcv 2308 . . 3 𝑦𝑉
3432, 33nfrabxy 2646 . 2 𝑦{𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}
352, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34ovmpodxf 5967 1 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  wcel 2136  {crab 2448  Vcvv 2726  [wsbc 2951  cop 3579  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108
This theorem is referenced by:  mpoxopovel  6209
  Copyright terms: Public domain W3C validator