Proof of Theorem mpoxopoveq
| Step | Hyp | Ref
 | Expression | 
| 1 |   | mpoxopoveq.f | 
. . 3
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | 
| 2 | 1 | a1i 9 | 
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑})) | 
| 3 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = 〈𝑉, 𝑊〉 → (1st ‘𝑥) = (1st
‘〈𝑉, 𝑊〉)) | 
| 4 |   | op1stg 6208 | 
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (1st ‘〈𝑉, 𝑊〉) = 𝑉) | 
| 5 | 4 | adantr 276 | 
. . . . 5
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (1st ‘〈𝑉, 𝑊〉) = 𝑉) | 
| 6 | 3, 5 | sylan9eqr 2251 | 
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ 𝑥 = 〈𝑉, 𝑊〉) → (1st ‘𝑥) = 𝑉) | 
| 7 | 6 | adantrr 479 | 
. . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → (1st ‘𝑥) = 𝑉) | 
| 8 |   | sbceq1a 2999 | 
. . . . . 6
⊢ (𝑦 = 𝐾 → (𝜑 ↔ [𝐾 / 𝑦]𝜑)) | 
| 9 | 8 | adantl 277 | 
. . . . 5
⊢ ((𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾) → (𝜑 ↔ [𝐾 / 𝑦]𝜑)) | 
| 10 | 9 | adantl 277 | 
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → (𝜑 ↔ [𝐾 / 𝑦]𝜑)) | 
| 11 |   | sbceq1a 2999 | 
. . . . . 6
⊢ (𝑥 = 〈𝑉, 𝑊〉 → ([𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) | 
| 12 | 11 | adantr 276 | 
. . . . 5
⊢ ((𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾) → ([𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) | 
| 13 | 12 | adantl 277 | 
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → ([𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) | 
| 14 | 10, 13 | bitrd 188 | 
. . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → (𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) | 
| 15 | 7, 14 | rabeqbidv 2758 | 
. 2
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑} = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | 
| 16 |   | opexg 4261 | 
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 〈𝑉, 𝑊〉 ∈ V) | 
| 17 | 16 | adantr 276 | 
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → 〈𝑉, 𝑊〉 ∈ V) | 
| 18 |   | simpr 110 | 
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → 𝐾 ∈ 𝑉) | 
| 19 |   | rabexg 4176 | 
. . 3
⊢ (𝑉 ∈ 𝑋 → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ∈ V) | 
| 20 | 19 | ad2antrr 488 | 
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ∈ V) | 
| 21 |   | equid 1715 | 
. . 3
⊢ 𝑧 = 𝑧 | 
| 22 |   | nfvd 1543 | 
. . 3
⊢ (𝑧 = 𝑧 → Ⅎ𝑥((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉)) | 
| 23 | 21, 22 | ax-mp 5 | 
. 2
⊢
Ⅎ𝑥((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) | 
| 24 |   | nfvd 1543 | 
. . 3
⊢ (𝑧 = 𝑧 → Ⅎ𝑦((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉)) | 
| 25 | 21, 24 | ax-mp 5 | 
. 2
⊢
Ⅎ𝑦((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) | 
| 26 |   | nfcv 2339 | 
. 2
⊢
Ⅎ𝑦〈𝑉, 𝑊〉 | 
| 27 |   | nfcv 2339 | 
. 2
⊢
Ⅎ𝑥𝐾 | 
| 28 |   | nfsbc1v 3008 | 
. . 3
⊢
Ⅎ𝑥[〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 | 
| 29 |   | nfcv 2339 | 
. . 3
⊢
Ⅎ𝑥𝑉 | 
| 30 | 28, 29 | nfrabw 2678 | 
. 2
⊢
Ⅎ𝑥{𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} | 
| 31 |   | nfsbc1v 3008 | 
. . . 4
⊢
Ⅎ𝑦[𝐾 / 𝑦]𝜑 | 
| 32 | 26, 31 | nfsbc 3010 | 
. . 3
⊢
Ⅎ𝑦[〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 | 
| 33 |   | nfcv 2339 | 
. . 3
⊢
Ⅎ𝑦𝑉 | 
| 34 | 32, 33 | nfrabw 2678 | 
. 2
⊢
Ⅎ𝑦{𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} | 
| 35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpodxf 6048 | 
1
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |