Proof of Theorem mpoxopoveq
Step | Hyp | Ref
| Expression |
1 | | mpoxopoveq.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
2 | 1 | a1i 9 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑})) |
3 | | fveq2 5486 |
. . . . 5
⊢ (𝑥 = 〈𝑉, 𝑊〉 → (1st ‘𝑥) = (1st
‘〈𝑉, 𝑊〉)) |
4 | | op1stg 6118 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (1st ‘〈𝑉, 𝑊〉) = 𝑉) |
5 | 4 | adantr 274 |
. . . . 5
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (1st ‘〈𝑉, 𝑊〉) = 𝑉) |
6 | 3, 5 | sylan9eqr 2221 |
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ 𝑥 = 〈𝑉, 𝑊〉) → (1st ‘𝑥) = 𝑉) |
7 | 6 | adantrr 471 |
. . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → (1st ‘𝑥) = 𝑉) |
8 | | sbceq1a 2960 |
. . . . . 6
⊢ (𝑦 = 𝐾 → (𝜑 ↔ [𝐾 / 𝑦]𝜑)) |
9 | 8 | adantl 275 |
. . . . 5
⊢ ((𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾) → (𝜑 ↔ [𝐾 / 𝑦]𝜑)) |
10 | 9 | adantl 275 |
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → (𝜑 ↔ [𝐾 / 𝑦]𝜑)) |
11 | | sbceq1a 2960 |
. . . . . 6
⊢ (𝑥 = 〈𝑉, 𝑊〉 → ([𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) |
12 | 11 | adantr 274 |
. . . . 5
⊢ ((𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾) → ([𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) |
13 | 12 | adantl 275 |
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → ([𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) |
14 | 10, 13 | bitrd 187 |
. . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → (𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) |
15 | 7, 14 | rabeqbidv 2721 |
. 2
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) ∧ (𝑥 = 〈𝑉, 𝑊〉 ∧ 𝑦 = 𝐾)) → {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑} = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
16 | | opexg 4206 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 〈𝑉, 𝑊〉 ∈ V) |
17 | 16 | adantr 274 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → 〈𝑉, 𝑊〉 ∈ V) |
18 | | simpr 109 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → 𝐾 ∈ 𝑉) |
19 | | rabexg 4125 |
. . 3
⊢ (𝑉 ∈ 𝑋 → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ∈ V) |
20 | 19 | ad2antrr 480 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ∈ V) |
21 | | equid 1689 |
. . 3
⊢ 𝑧 = 𝑧 |
22 | | nfvd 1517 |
. . 3
⊢ (𝑧 = 𝑧 → Ⅎ𝑥((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉)) |
23 | 21, 22 | ax-mp 5 |
. 2
⊢
Ⅎ𝑥((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) |
24 | | nfvd 1517 |
. . 3
⊢ (𝑧 = 𝑧 → Ⅎ𝑦((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉)) |
25 | 21, 24 | ax-mp 5 |
. 2
⊢
Ⅎ𝑦((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) |
26 | | nfcv 2308 |
. 2
⊢
Ⅎ𝑦〈𝑉, 𝑊〉 |
27 | | nfcv 2308 |
. 2
⊢
Ⅎ𝑥𝐾 |
28 | | nfsbc1v 2969 |
. . 3
⊢
Ⅎ𝑥[〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 |
29 | | nfcv 2308 |
. . 3
⊢
Ⅎ𝑥𝑉 |
30 | 28, 29 | nfrabxy 2646 |
. 2
⊢
Ⅎ𝑥{𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} |
31 | | nfsbc1v 2969 |
. . . 4
⊢
Ⅎ𝑦[𝐾 / 𝑦]𝜑 |
32 | 26, 31 | nfsbc 2971 |
. . 3
⊢
Ⅎ𝑦[〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 |
33 | | nfcv 2308 |
. . 3
⊢
Ⅎ𝑦𝑉 |
34 | 32, 33 | nfrabxy 2646 |
. 2
⊢
Ⅎ𝑦{𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} |
35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpodxf 5967 |
1
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |