| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2 | GIF version | ||
| Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iota2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| iota2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V) | |
| 3 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑) | |
| 4 | iota2.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 6 | nfv 1550 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
| 7 | nfeu1 2064 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 8 | 6, 7 | nfan 1587 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑) |
| 9 | nfvd 1551 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓) | |
| 10 | nfcvd 2348 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝐴) | |
| 11 | 2, 3, 5, 8, 9, 10 | iota2df 5254 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| 12 | 1, 11 | sylan 283 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∃!weu 2053 ∈ wcel 2175 Vcvv 2771 ℩cio 5227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-sn 3638 df-pr 3639 df-uni 3850 df-iota 5229 |
| This theorem is referenced by: iotam 5260 pczpre 12539 pcdiv 12544 gsum0g 13146 gsumval2 13147 |
| Copyright terms: Public domain | W3C validator |