| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iota2 | GIF version | ||
| Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| iota2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| iota2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V) | |
| 3 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑) | |
| 4 | iota2.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) | 
| 6 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
| 7 | nfeu1 2056 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 8 | 6, 7 | nfan 1579 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑) | 
| 9 | nfvd 1543 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓) | |
| 10 | nfcvd 2340 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝐴) | |
| 11 | 2, 3, 5, 8, 9, 10 | iota2df 5244 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | 
| 12 | 1, 11 | sylan 283 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: iotam 5250 pczpre 12466 pcdiv 12471 gsum0g 13039 gsumval2 13040 | 
| Copyright terms: Public domain | W3C validator |