ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2 GIF version

Theorem iota2 5188
Description: The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iota2 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iota2
StepHypRef Expression
1 elex 2741 . 2 (𝐴𝐵𝐴 ∈ V)
2 simpl 108 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝐴 ∈ V)
3 simpr 109 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → ∃!𝑥𝜑)
4 iota2.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
54adantl 275 . . 3 (((𝐴 ∈ V ∧ ∃!𝑥𝜑) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
6 nfv 1521 . . . 4 𝑥 𝐴 ∈ V
7 nfeu1 2030 . . . 4 𝑥∃!𝑥𝜑
86, 7nfan 1558 . . 3 𝑥(𝐴 ∈ V ∧ ∃!𝑥𝜑)
9 nfvd 1522 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → Ⅎ𝑥𝜓)
10 nfcvd 2313 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → 𝑥𝐴)
112, 3, 5, 8, 9, 10iota2df 5184 . 2 ((𝐴 ∈ V ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
121, 11sylan 281 1 ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  ∃!weu 2019  wcel 2141  Vcvv 2730  cio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  iotam  5190  pczpre  12251  pcdiv  12256
  Copyright terms: Public domain W3C validator