![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nssne2 | GIF version |
Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
nssne2 | ⊢ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3179 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | 1 | biimpcd 159 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 = 𝐵 → 𝐵 ⊆ 𝐶)) |
3 | 2 | necon3bd 2390 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (¬ 𝐵 ⊆ 𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ≠ wne 2347 ⊆ wss 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-ne 2348 df-in 3136 df-ss 3143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |