Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3143 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | sstr2 3135 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
3 | 2 | adantl 275 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
4 | sstr2 3135 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
5 | 4 | adantr 274 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
6 | 3, 5 | impbid 128 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
7 | 1, 6 | sylbi 120 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ⊆ wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: sseq12 3153 sseq1i 3154 sseq1d 3157 nssne2 3187 sbss 3502 pwjust 3544 elpw 3549 elpwg 3551 sssnr 3716 ssprr 3719 sstpr 3720 unimax 3806 trss 4071 elssabg 4109 bnd2 4134 exmidexmid 4157 exmidsssn 4163 exmidsssnc 4164 mss 4186 exss 4187 frforeq2 4305 ordtri2orexmid 4481 ontr2exmid 4483 onsucsssucexmid 4485 reg2exmidlema 4492 sucprcreg 4507 ordtri2or2exmid 4529 ontri2orexmidim 4530 onintexmid 4531 tfis 4541 tfisi 4545 elomssom 4563 nnregexmid 4579 releq 4667 xpsspw 4697 iss 4911 relcnvtr 5104 iotass 5151 fununi 5237 funcnvuni 5238 funimaexglem 5252 ffoss 5445 ssimaex 5528 tfrlem1 6252 el2oss1o 6387 nnsucsssuc 6436 qsss 6536 phpm 6807 ssfiexmid 6818 findcard2d 6833 findcard2sd 6834 diffifi 6836 isinfinf 6839 fiintim 6870 fisseneq 6873 fidcenumlemrk 6895 fidcenumlemr 6896 sbthlem2 6899 isbth 6908 ctssdclemr 7050 onntri45 7170 elinp 7388 sup3exmid 8822 zfz1isolem1 10704 zfz1iso 10705 fimaxre2 11119 sumeq1 11245 fsum2d 11325 fsumabs 11355 fsumiun 11367 prodeq1f 11442 fprod2d 11513 exmidunben 12138 ctiunct 12152 restsspw 12332 uniopn 12370 fiinopn 12373 fiinbas 12418 baspartn 12419 eltg2 12424 eltg3 12428 topbas 12438 clsval 12482 neival 12514 neiint 12516 neipsm 12525 opnneissb 12526 opnssneib 12527 innei 12534 restbasg 12539 cnpdis 12613 txbas 12629 eltx 12630 neitx 12639 txlm 12650 blssexps 12800 blssex 12801 neibl 12862 metrest 12877 xmettx 12881 tgioo 12917 tgqioo 12918 limcimolemlt 13004 recnprss 13027 bj-om 13483 bj-2inf 13484 bj-nntrans 13497 bj-omtrans 13502 exmid1stab 13543 subctctexmid 13544 pw1nct 13546 |
Copyright terms: Public domain | W3C validator |