Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | sstr2 3154 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
3 | 2 | adantl 275 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
4 | sstr2 3154 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
5 | 4 | adantr 274 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
6 | 3, 5 | impbid 128 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
7 | 1, 6 | sylbi 120 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseq12 3172 sseq1i 3173 sseq1d 3176 nssne2 3206 sbss 3523 pwjust 3567 elpw 3572 elpwg 3574 sssnr 3740 ssprr 3743 sstpr 3744 unimax 3830 trss 4096 elssabg 4134 bnd2 4159 exmidexmid 4182 exmidsssn 4188 exmidsssnc 4189 mss 4211 exss 4212 frforeq2 4330 ordtri2orexmid 4507 ontr2exmid 4509 onsucsssucexmid 4511 reg2exmidlema 4518 sucprcreg 4533 ordtri2or2exmid 4555 ontri2orexmidim 4556 onintexmid 4557 tfis 4567 tfisi 4571 elomssom 4589 nnregexmid 4605 releq 4693 xpsspw 4723 iss 4937 relcnvtr 5130 iotass 5177 fununi 5266 funcnvuni 5267 funimaexglem 5281 ffoss 5474 ssimaex 5557 tfrlem1 6287 el2oss1o 6422 nnsucsssuc 6471 qsss 6572 phpm 6843 ssfiexmid 6854 findcard2d 6869 findcard2sd 6870 diffifi 6872 isinfinf 6875 fiintim 6906 fisseneq 6909 fidcenumlemrk 6931 fidcenumlemr 6932 sbthlem2 6935 isbth 6944 ctssdclemr 7089 onntri45 7218 elinp 7436 sup3exmid 8873 zfz1isolem1 10775 zfz1iso 10776 fimaxre2 11190 sumeq1 11318 fsum2d 11398 fsumabs 11428 fsumiun 11440 prodeq1f 11515 fprod2d 11586 exmidunben 12381 ctiunct 12395 ssomct 12400 restsspw 12589 uniopn 12793 fiinopn 12796 fiinbas 12841 baspartn 12842 eltg2 12847 eltg3 12851 topbas 12861 clsval 12905 neival 12937 neiint 12939 neipsm 12948 opnneissb 12949 opnssneib 12950 innei 12957 restbasg 12962 cnpdis 13036 txbas 13052 eltx 13053 neitx 13062 txlm 13073 blssexps 13223 blssex 13224 neibl 13285 metrest 13300 xmettx 13304 tgioo 13340 tgqioo 13341 limcimolemlt 13427 recnprss 13450 bj-om 13972 bj-2inf 13973 bj-nntrans 13986 bj-omtrans 13991 exmid1stab 14033 subctctexmid 14034 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |