![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3172 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | sstr2 3164 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
4 | sstr2 3164 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3137 df-ss 3144 |
This theorem is referenced by: sseq12 3182 sseq1i 3183 sseq1d 3186 nssne2 3216 sbss 3533 pwjust 3578 elpw 3583 elpwg 3585 sssnr 3755 ssprr 3758 sstpr 3759 unimax 3845 trss 4112 elssabg 4150 bnd2 4175 exmidexmid 4198 exmidsssn 4204 exmidsssnc 4205 exmid1stab 4210 mss 4228 exss 4229 frforeq2 4347 ordtri2orexmid 4524 ontr2exmid 4526 onsucsssucexmid 4528 reg2exmidlema 4535 sucprcreg 4550 ordtri2or2exmid 4572 ontri2orexmidim 4573 onintexmid 4574 tfis 4584 tfisi 4588 elomssom 4606 nnregexmid 4622 releq 4710 xpsspw 4740 iss 4955 relcnvtr 5150 iotass 5197 fununi 5286 funcnvuni 5287 funimaexglem 5301 ffoss 5495 ssimaex 5580 tfrlem1 6312 el2oss1o 6447 nnsucsssuc 6496 qsss 6597 phpm 6868 ssfiexmid 6879 findcard2d 6894 findcard2sd 6895 diffifi 6897 isinfinf 6900 fiintim 6931 fisseneq 6934 fidcenumlemrk 6956 fidcenumlemr 6957 sbthlem2 6960 isbth 6969 ctssdclemr 7114 onntri45 7243 tapeq1 7254 elinp 7476 sup3exmid 8917 zfz1isolem1 10823 zfz1iso 10824 fimaxre2 11238 sumeq1 11366 fsum2d 11446 fsumabs 11476 fsumiun 11488 prodeq1f 11563 fprod2d 11634 exmidunben 12430 ctiunct 12444 ssomct 12449 restsspw 12704 lspval 13488 uniopn 13662 fiinopn 13665 fiinbas 13710 baspartn 13711 eltg2 13714 eltg3 13718 topbas 13728 clsval 13772 neival 13804 neiint 13806 neipsm 13815 opnneissb 13816 opnssneib 13817 innei 13824 restbasg 13829 cnpdis 13903 txbas 13919 eltx 13920 neitx 13929 txlm 13940 blssexps 14090 blssex 14091 neibl 14152 metrest 14167 xmettx 14171 tgioo 14207 tgqioo 14208 limcimolemlt 14294 recnprss 14317 bj-om 14850 bj-2inf 14851 bj-nntrans 14864 bj-omtrans 14869 subctctexmid 14912 pw1nct 14914 |
Copyright terms: Public domain | W3C validator |