| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | sstr2 3231 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
| 4 | sstr2 3231 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| 6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12 3249 sseq1i 3250 sseq1d 3253 nssne2 3283 sbss 3599 pwjust 3650 elpw 3655 elpwg 3657 sssnr 3831 ssprr 3834 sstpr 3835 unimax 3922 trss 4191 elssabg 4232 bnd2 4257 exmidexmid 4280 exmidsssn 4286 exmidsssnc 4287 exmid1stab 4292 mss 4312 exss 4313 frforeq2 4436 ordtri2orexmid 4615 ontr2exmid 4617 onsucsssucexmid 4619 reg2exmidlema 4626 sucprcreg 4641 ordtri2or2exmid 4663 ontri2orexmidim 4664 onintexmid 4665 tfis 4675 tfisi 4679 elomssom 4697 nnregexmid 4713 releq 4801 xpsspw 4831 iss 5051 relcnvtr 5248 iotass 5296 fununi 5389 funcnvuni 5390 funimaexglem 5404 ffoss 5606 ssimaex 5697 tfrlem1 6460 el2oss1o 6597 nnsucsssuc 6646 qsss 6749 phpm 7035 ssfiexmid 7046 findcard2d 7061 findcard2sd 7062 diffifi 7064 isinfinf 7067 fiintim 7101 fisseneq 7104 fidcenumlemrk 7129 fidcenumlemr 7130 sbthlem2 7133 isbth 7142 ctssdclemr 7287 onntri45 7434 tapeq1 7446 elinp 7669 sup3exmid 9112 zfz1isolem1 11070 zfz1iso 11071 fimaxre2 11746 sumeq1 11874 fsum2d 11954 fsumabs 11984 fsumiun 11996 prodeq1f 12071 fprod2d 12142 exmidunben 13005 ctiunct 13019 ssomct 13024 restsspw 13290 lspval 14362 uniopn 14683 fiinopn 14686 fiinbas 14731 baspartn 14732 eltg2 14735 eltg3 14739 topbas 14749 clsval 14793 neival 14825 neiint 14827 neipsm 14836 opnneissb 14837 opnssneib 14838 innei 14845 restbasg 14850 cnpdis 14924 txbas 14940 eltx 14941 neitx 14950 txlm 14961 blssexps 15111 blssex 15112 neibl 15173 metrest 15188 xmettx 15192 tgioo 15236 tgqioo 15237 limcimolemlt 15346 recnprss 15369 dvmptfsum 15407 lpvtx 15887 bj-om 16324 bj-2inf 16325 bj-nntrans 16338 bj-omtrans 16343 subctctexmid 16395 domomsubct 16396 pw1nct 16398 |
| Copyright terms: Public domain | W3C validator |