| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3199 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | sstr2 3191 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
| 4 | sstr2 3191 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| 6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12 3209 sseq1i 3210 sseq1d 3213 nssne2 3243 sbss 3559 pwjust 3607 elpw 3612 elpwg 3614 sssnr 3784 ssprr 3787 sstpr 3788 unimax 3874 trss 4141 elssabg 4182 bnd2 4207 exmidexmid 4230 exmidsssn 4236 exmidsssnc 4237 exmid1stab 4242 mss 4260 exss 4261 frforeq2 4381 ordtri2orexmid 4560 ontr2exmid 4562 onsucsssucexmid 4564 reg2exmidlema 4571 sucprcreg 4586 ordtri2or2exmid 4608 ontri2orexmidim 4609 onintexmid 4610 tfis 4620 tfisi 4624 elomssom 4642 nnregexmid 4658 releq 4746 xpsspw 4776 iss 4993 relcnvtr 5190 iotass 5237 fununi 5327 funcnvuni 5328 funimaexglem 5342 ffoss 5539 ssimaex 5625 tfrlem1 6375 el2oss1o 6510 nnsucsssuc 6559 qsss 6662 phpm 6935 ssfiexmid 6946 findcard2d 6961 findcard2sd 6962 diffifi 6964 isinfinf 6967 fiintim 7001 fisseneq 7004 fidcenumlemrk 7029 fidcenumlemr 7030 sbthlem2 7033 isbth 7042 ctssdclemr 7187 onntri45 7326 tapeq1 7337 elinp 7560 sup3exmid 9003 zfz1isolem1 10951 zfz1iso 10952 fimaxre2 11411 sumeq1 11539 fsum2d 11619 fsumabs 11649 fsumiun 11661 prodeq1f 11736 fprod2d 11807 exmidunben 12670 ctiunct 12684 ssomct 12689 restsspw 12953 lspval 14024 uniopn 14345 fiinopn 14348 fiinbas 14393 baspartn 14394 eltg2 14397 eltg3 14401 topbas 14411 clsval 14455 neival 14487 neiint 14489 neipsm 14498 opnneissb 14499 opnssneib 14500 innei 14507 restbasg 14512 cnpdis 14586 txbas 14602 eltx 14603 neitx 14612 txlm 14623 blssexps 14773 blssex 14774 neibl 14835 metrest 14850 xmettx 14854 tgioo 14898 tgqioo 14899 limcimolemlt 15008 recnprss 15031 dvmptfsum 15069 bj-om 15691 bj-2inf 15692 bj-nntrans 15705 bj-omtrans 15710 subctctexmid 15755 domomsubct 15756 pw1nct 15758 |
| Copyright terms: Public domain | W3C validator |