![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3195 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | sstr2 3187 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
4 | sstr2 3187 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sseq12 3205 sseq1i 3206 sseq1d 3209 nssne2 3239 sbss 3555 pwjust 3603 elpw 3608 elpwg 3610 sssnr 3780 ssprr 3783 sstpr 3784 unimax 3870 trss 4137 elssabg 4178 bnd2 4203 exmidexmid 4226 exmidsssn 4232 exmidsssnc 4233 exmid1stab 4238 mss 4256 exss 4257 frforeq2 4377 ordtri2orexmid 4556 ontr2exmid 4558 onsucsssucexmid 4560 reg2exmidlema 4567 sucprcreg 4582 ordtri2or2exmid 4604 ontri2orexmidim 4605 onintexmid 4606 tfis 4616 tfisi 4620 elomssom 4638 nnregexmid 4654 releq 4742 xpsspw 4772 iss 4989 relcnvtr 5186 iotass 5233 fununi 5323 funcnvuni 5324 funimaexglem 5338 ffoss 5533 ssimaex 5619 tfrlem1 6363 el2oss1o 6498 nnsucsssuc 6547 qsss 6650 phpm 6923 ssfiexmid 6934 findcard2d 6949 findcard2sd 6950 diffifi 6952 isinfinf 6955 fiintim 6987 fisseneq 6990 fidcenumlemrk 7015 fidcenumlemr 7016 sbthlem2 7019 isbth 7028 ctssdclemr 7173 onntri45 7303 tapeq1 7314 elinp 7536 sup3exmid 8978 zfz1isolem1 10914 zfz1iso 10915 fimaxre2 11373 sumeq1 11501 fsum2d 11581 fsumabs 11611 fsumiun 11623 prodeq1f 11698 fprod2d 11769 exmidunben 12586 ctiunct 12600 ssomct 12605 restsspw 12863 lspval 13889 uniopn 14180 fiinopn 14183 fiinbas 14228 baspartn 14229 eltg2 14232 eltg3 14236 topbas 14246 clsval 14290 neival 14322 neiint 14324 neipsm 14333 opnneissb 14334 opnssneib 14335 innei 14342 restbasg 14347 cnpdis 14421 txbas 14437 eltx 14438 neitx 14447 txlm 14458 blssexps 14608 blssex 14609 neibl 14670 metrest 14685 xmettx 14689 tgioo 14733 tgqioo 14734 limcimolemlt 14843 recnprss 14866 dvmptfsum 14904 bj-om 15499 bj-2inf 15500 bj-nntrans 15513 bj-omtrans 15518 subctctexmid 15561 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |