| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | sstr2 3190 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | 
| 4 | sstr2 3190 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | 
| 6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | 
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sseq12 3208 sseq1i 3209 sseq1d 3212 nssne2 3242 sbss 3558 pwjust 3606 elpw 3611 elpwg 3613 sssnr 3783 ssprr 3786 sstpr 3787 unimax 3873 trss 4140 elssabg 4181 bnd2 4206 exmidexmid 4229 exmidsssn 4235 exmidsssnc 4236 exmid1stab 4241 mss 4259 exss 4260 frforeq2 4380 ordtri2orexmid 4559 ontr2exmid 4561 onsucsssucexmid 4563 reg2exmidlema 4570 sucprcreg 4585 ordtri2or2exmid 4607 ontri2orexmidim 4608 onintexmid 4609 tfis 4619 tfisi 4623 elomssom 4641 nnregexmid 4657 releq 4745 xpsspw 4775 iss 4992 relcnvtr 5189 iotass 5236 fununi 5326 funcnvuni 5327 funimaexglem 5341 ffoss 5536 ssimaex 5622 tfrlem1 6366 el2oss1o 6501 nnsucsssuc 6550 qsss 6653 phpm 6926 ssfiexmid 6937 findcard2d 6952 findcard2sd 6953 diffifi 6955 isinfinf 6958 fiintim 6992 fisseneq 6995 fidcenumlemrk 7020 fidcenumlemr 7021 sbthlem2 7024 isbth 7033 ctssdclemr 7178 onntri45 7308 tapeq1 7319 elinp 7541 sup3exmid 8984 zfz1isolem1 10932 zfz1iso 10933 fimaxre2 11392 sumeq1 11520 fsum2d 11600 fsumabs 11630 fsumiun 11642 prodeq1f 11717 fprod2d 11788 exmidunben 12643 ctiunct 12657 ssomct 12662 restsspw 12920 lspval 13946 uniopn 14237 fiinopn 14240 fiinbas 14285 baspartn 14286 eltg2 14289 eltg3 14293 topbas 14303 clsval 14347 neival 14379 neiint 14381 neipsm 14390 opnneissb 14391 opnssneib 14392 innei 14399 restbasg 14404 cnpdis 14478 txbas 14494 eltx 14495 neitx 14504 txlm 14515 blssexps 14665 blssex 14666 neibl 14727 metrest 14742 xmettx 14746 tgioo 14790 tgqioo 14791 limcimolemlt 14900 recnprss 14923 dvmptfsum 14961 bj-om 15583 bj-2inf 15584 bj-nntrans 15597 bj-omtrans 15602 subctctexmid 15645 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |