| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | sstr2 3231 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
| 4 | sstr2 3231 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| 6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12 3249 sseq1i 3250 sseq1d 3253 nssne2 3283 sbss 3599 pwjust 3650 elpw 3655 elpwg 3657 sssnr 3830 ssprr 3833 sstpr 3834 unimax 3921 trss 4190 elssabg 4231 bnd2 4256 exmidexmid 4279 exmidsssn 4285 exmidsssnc 4286 exmid1stab 4291 mss 4311 exss 4312 frforeq2 4433 ordtri2orexmid 4612 ontr2exmid 4614 onsucsssucexmid 4616 reg2exmidlema 4623 sucprcreg 4638 ordtri2or2exmid 4660 ontri2orexmidim 4661 onintexmid 4662 tfis 4672 tfisi 4676 elomssom 4694 nnregexmid 4710 releq 4798 xpsspw 4828 iss 5047 relcnvtr 5244 iotass 5292 fununi 5385 funcnvuni 5386 funimaexglem 5400 ffoss 5600 ssimaex 5688 tfrlem1 6444 el2oss1o 6579 nnsucsssuc 6628 qsss 6731 phpm 7015 ssfiexmid 7026 findcard2d 7041 findcard2sd 7042 diffifi 7044 isinfinf 7047 fiintim 7081 fisseneq 7084 fidcenumlemrk 7109 fidcenumlemr 7110 sbthlem2 7113 isbth 7122 ctssdclemr 7267 onntri45 7414 tapeq1 7426 elinp 7649 sup3exmid 9092 zfz1isolem1 11049 zfz1iso 11050 fimaxre2 11724 sumeq1 11852 fsum2d 11932 fsumabs 11962 fsumiun 11974 prodeq1f 12049 fprod2d 12120 exmidunben 12983 ctiunct 12997 ssomct 13002 restsspw 13268 lspval 14339 uniopn 14660 fiinopn 14663 fiinbas 14708 baspartn 14709 eltg2 14712 eltg3 14716 topbas 14726 clsval 14770 neival 14802 neiint 14804 neipsm 14813 opnneissb 14814 opnssneib 14815 innei 14822 restbasg 14827 cnpdis 14901 txbas 14917 eltx 14918 neitx 14927 txlm 14938 blssexps 15088 blssex 15089 neibl 15150 metrest 15165 xmettx 15169 tgioo 15213 tgqioo 15214 limcimolemlt 15323 recnprss 15346 dvmptfsum 15384 lpvtx 15864 bj-om 16230 bj-2inf 16231 bj-nntrans 16244 bj-omtrans 16249 subctctexmid 16297 domomsubct 16298 pw1nct 16300 |
| Copyright terms: Public domain | W3C validator |