| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3210 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | sstr2 3202 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
| 4 | sstr2 3202 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
| 6 | 3, 5 | impbid 129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 7 | 1, 6 | sylbi 121 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ⊆ wss 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3174 df-ss 3181 |
| This theorem is referenced by: sseq12 3220 sseq1i 3221 sseq1d 3224 nssne2 3254 sbss 3570 pwjust 3619 elpw 3624 elpwg 3626 sssnr 3797 ssprr 3800 sstpr 3801 unimax 3887 trss 4156 elssabg 4197 bnd2 4222 exmidexmid 4245 exmidsssn 4251 exmidsssnc 4252 exmid1stab 4257 mss 4275 exss 4276 frforeq2 4397 ordtri2orexmid 4576 ontr2exmid 4578 onsucsssucexmid 4580 reg2exmidlema 4587 sucprcreg 4602 ordtri2or2exmid 4624 ontri2orexmidim 4625 onintexmid 4626 tfis 4636 tfisi 4640 elomssom 4658 nnregexmid 4674 releq 4762 xpsspw 4792 iss 5011 relcnvtr 5208 iotass 5255 fununi 5348 funcnvuni 5349 funimaexglem 5363 ffoss 5563 ssimaex 5650 tfrlem1 6404 el2oss1o 6539 nnsucsssuc 6588 qsss 6691 phpm 6974 ssfiexmid 6985 findcard2d 7000 findcard2sd 7001 diffifi 7003 isinfinf 7006 fiintim 7040 fisseneq 7043 fidcenumlemrk 7068 fidcenumlemr 7069 sbthlem2 7072 isbth 7081 ctssdclemr 7226 onntri45 7366 tapeq1 7377 elinp 7600 sup3exmid 9043 zfz1isolem1 10998 zfz1iso 10999 fimaxre2 11588 sumeq1 11716 fsum2d 11796 fsumabs 11826 fsumiun 11838 prodeq1f 11913 fprod2d 11984 exmidunben 12847 ctiunct 12861 ssomct 12866 restsspw 13131 lspval 14202 uniopn 14523 fiinopn 14526 fiinbas 14571 baspartn 14572 eltg2 14575 eltg3 14579 topbas 14589 clsval 14633 neival 14665 neiint 14667 neipsm 14676 opnneissb 14677 opnssneib 14678 innei 14685 restbasg 14690 cnpdis 14764 txbas 14780 eltx 14781 neitx 14790 txlm 14801 blssexps 14951 blssex 14952 neibl 15013 metrest 15028 xmettx 15032 tgioo 15076 tgqioo 15077 limcimolemlt 15186 recnprss 15209 dvmptfsum 15247 lpvtx 15725 bj-om 15987 bj-2inf 15988 bj-nntrans 16001 bj-omtrans 16006 subctctexmid 16052 domomsubct 16053 pw1nct 16055 |
| Copyright terms: Public domain | W3C validator |