Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1 | GIF version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3156 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | sstr2 3148 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) | |
3 | 2 | adantl 275 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶)) |
4 | sstr2 3148 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
5 | 4 | adantr 274 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) |
6 | 3, 5 | impbid 128 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
7 | 1, 6 | sylbi 120 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ⊆ wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: sseq12 3166 sseq1i 3167 sseq1d 3170 nssne2 3200 sbss 3516 pwjust 3559 elpw 3564 elpwg 3566 sssnr 3732 ssprr 3735 sstpr 3736 unimax 3822 trss 4088 elssabg 4126 bnd2 4151 exmidexmid 4174 exmidsssn 4180 exmidsssnc 4181 mss 4203 exss 4204 frforeq2 4322 ordtri2orexmid 4499 ontr2exmid 4501 onsucsssucexmid 4503 reg2exmidlema 4510 sucprcreg 4525 ordtri2or2exmid 4547 ontri2orexmidim 4548 onintexmid 4549 tfis 4559 tfisi 4563 elomssom 4581 nnregexmid 4597 releq 4685 xpsspw 4715 iss 4929 relcnvtr 5122 iotass 5169 fununi 5255 funcnvuni 5256 funimaexglem 5270 ffoss 5463 ssimaex 5546 tfrlem1 6272 el2oss1o 6407 nnsucsssuc 6456 qsss 6556 phpm 6827 ssfiexmid 6838 findcard2d 6853 findcard2sd 6854 diffifi 6856 isinfinf 6859 fiintim 6890 fisseneq 6893 fidcenumlemrk 6915 fidcenumlemr 6916 sbthlem2 6919 isbth 6928 ctssdclemr 7073 onntri45 7193 elinp 7411 sup3exmid 8848 zfz1isolem1 10749 zfz1iso 10750 fimaxre2 11164 sumeq1 11292 fsum2d 11372 fsumabs 11402 fsumiun 11414 prodeq1f 11489 fprod2d 11560 exmidunben 12355 ctiunct 12369 ssomct 12374 restsspw 12561 uniopn 12599 fiinopn 12602 fiinbas 12647 baspartn 12648 eltg2 12653 eltg3 12657 topbas 12667 clsval 12711 neival 12743 neiint 12745 neipsm 12754 opnneissb 12755 opnssneib 12756 innei 12763 restbasg 12768 cnpdis 12842 txbas 12858 eltx 12859 neitx 12868 txlm 12879 blssexps 13029 blssex 13030 neibl 13091 metrest 13106 xmettx 13110 tgioo 13146 tgqioo 13147 limcimolemlt 13233 recnprss 13256 bj-om 13779 bj-2inf 13780 bj-nntrans 13793 bj-omtrans 13798 exmid1stab 13840 subctctexmid 13841 pw1nct 13843 |
Copyright terms: Public domain | W3C validator |