![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbid | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabbid.1 | ⊢ Ⅎ𝑥𝜑 |
opabbid.2 | ⊢ Ⅎ𝑦𝜑 |
opabbid.3 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbid | ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | opabbid.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | opabbid.3 | . . . . . 6 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | anbi2d 464 | . . . . 5 ⊢ (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒))) |
5 | 2, 4 | exbid 1616 | . . . 4 ⊢ (𝜑 → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒))) |
6 | 1, 5 | exbid 1616 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒))) |
7 | 6 | abbidv 2295 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)}) |
8 | df-opab 4066 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
9 | df-opab 4066 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)} | |
10 | 7, 8, 9 | 3eqtr4g 2235 | 1 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 {cab 2163 ⟨cop 3596 {copab 4064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-opab 4066 |
This theorem is referenced by: opabbidv 4070 mpteq12f 4084 fnoprabg 5976 |
Copyright terms: Public domain | W3C validator |