Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabbid | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabbid.1 | ⊢ Ⅎ𝑥𝜑 |
opabbid.2 | ⊢ Ⅎ𝑦𝜑 |
opabbid.3 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbid | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | opabbid.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | opabbid.3 | . . . . . 6 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | anbi2d 461 | . . . . 5 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
5 | 2, 4 | exbid 1609 | . . . 4 ⊢ (𝜑 → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
6 | 1, 5 | exbid 1609 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
7 | 6 | abbidv 2288 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
8 | df-opab 4051 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
9 | df-opab 4051 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
10 | 7, 8, 9 | 3eqtr4g 2228 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 Ⅎwnf 1453 ∃wex 1485 {cab 2156 〈cop 3586 {copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-opab 4051 |
This theorem is referenced by: opabbidv 4055 mpteq12f 4069 fnoprabg 5954 |
Copyright terms: Public domain | W3C validator |